Lecture 30

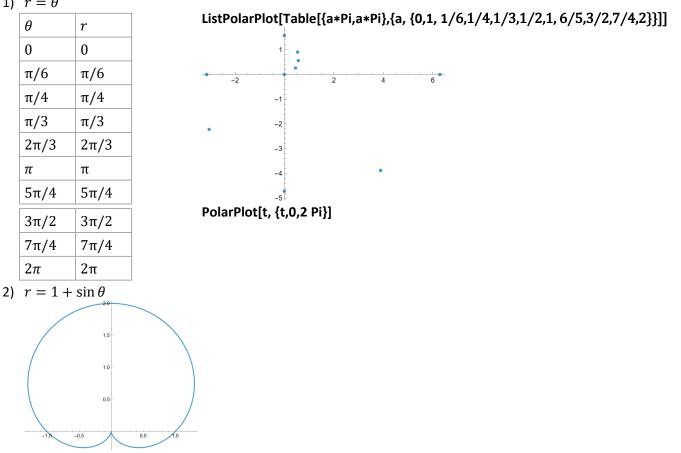
Tuesday, March 4, 2025 10:10 PM

A polar curve is a curve described in polar coordinates (r, θ) by $r = r(\theta), a \le \theta \le b$. Equivalently, it is a parametric curve in the Cartesian coordinates where

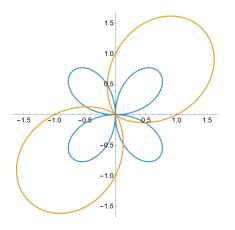
$$x = r\cos\theta = r(\theta)\cos\theta$$

 $y = r \sin \theta = r(\theta) \sin \theta$ Graph the following polar curves:

1) $r = \theta$



Intersection between two curves $r = \sin 2\theta$ and $r = 1 + \sin 2\theta$



The intersection point can have more than one equivalent polar coordinates: (r_1, θ_1) and (r_2, θ_2) .

We have $r_1 = \sin 2\theta_1$ and $r_2 = 1 + \sin 2\theta_2$.

For these polar coordinates to be equivalent, one of the three following scenarios must happen:

- 1) Either $r_1 = r_2$ and $\theta_1 = \theta_2 + k2\pi$
- 2) $r_1 = -r_2$ and $\theta_1 = \theta_2 + \pi + k2\pi$
- 3) $r_1 = r_2 = 0$ and θ_1, θ_2 are arbitrary

The first scenario cannot happen. For the second scenario to happen, we need $\sin 2\theta_1 = -1 - \sin 2\theta_1$, which implies $\sin 2\theta_1 = -1/2$. Thus, $2\theta_1 = \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{19\pi}{6}, \frac{23\pi}{6}.$ Then $\theta_1 = \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{19\pi}{6}, \frac{23\pi}{6}.$ Then

$$\theta_1 = \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}, \overline{\underline{12}}$$

The last scenario happens when $\theta_1 = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{4}$. These values of θ_1 correspond to 5 intersection points on the picture.