Monday, March 10, 2025 12:18 PM

Area of a polar region between two rays $\theta = a$ and $\theta = b$.

Let $A(\theta)$ be the area swept by the polar curve when the angle ranges from a to θ .

Then $A(\theta + h) - A(\theta)$ is the area of the red region. If h is small, this region looks like a circular sector with radius $r(\theta)$ with angle h. Thus,

$$A(\theta + h) - A(\theta) \approx \frac{1}{2}r(\theta)^2 h$$

Then

$$\frac{A(\theta+h)-A(\theta)}{h} \approx \frac{1}{2}r(\theta)^2$$

Let $h \to 0$, we get $A'(\theta) = \frac{1}{2}r(\theta)^2$. Now note that A(a) = 0. By the Fundamental Theorem of Calculus.

$$A = \frac{1}{2} \int_{a}^{b} r(\theta)^{2} d\theta$$

Example: What is the area enclosed by the heart curve $r = 1 + \sin \theta$?

Arclength of a polar curve between $\theta = a$ and $\theta = b$.

$$x = r \cos \theta = r(\theta) \cos \theta$$
$$y = r \sin \theta = r(\theta) \sin \theta$$

$$y = r\sin\theta = r(\theta)\sin\theta$$

$$L = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} d\theta = \int_{a}^{b} \sqrt{r^{2} + (r')^{2}} d\theta$$

Example: What is the length of the heart curve above?

Example: Find the tangent line to a polar curve at the point $(r, \theta) = (1 + \sqrt{3}/2, \pi/3)$ The parametric equation of the curve is:

$$x = r\cos\theta = (1 + \sin\theta)\cos\theta$$

$$y = r \sin \theta = (1 + \sin \theta) \sin \theta$$

At the point $(r, \theta) = (1 + \sqrt{3}/2, \pi/3)$, we have $x = (2 + \sqrt{3})/4$, $y = (2\sqrt{3} + 3)/4$.

The slope of the curve is
$$\frac{y'}{x'} = \frac{\cos\theta \sin\theta + (1+\sin\theta)\cos\theta}{\cos^2\theta - (1+\sin\theta)\sin\theta} = -1$$

Therefore, the equation of the tangent line is $y = \frac{2\sqrt{3}+3}{4} + (-1)\left(x - \frac{2+\sqrt{3}}{4}\right) = \frac{5+3\sqrt{3}}{4} - x$