A sequence (a_n) is a list of numbers a_1, a_2, a_3, \dots It is usually used as a means of approximation.

For example, what is the value of π ? It is an irrational number, thus having no repeating pattern in the decimal form. The answer depends on the accuracy that you want. In the Bible (1 Kings 7:23), $\pi \approx 3$. In elementary school, you were taught $\pi \approx 3.14$. Later, you found out more and more digits of π . There is a sequence of numbers that approximate π . For example,

3, 3.1, 3.14, 3.145, 3.1459,...

This is a sequence with a_n = the first n digits of π . It is not the only sequence that approximates π . For example,

4,
$$4\left(1-\frac{1}{3}\right)$$
, $4\left(1-\frac{1}{3}+\frac{1}{5}\right)$, $4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)$, $4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\right)$, ...

is another sequence that approximates π . The above formula was found by James Gregory in 1671 and Gottfried Leibniz in 1673. The general term of the above sequence is:

$$b_n = 4 \sum_{k=1}^n \frac{(-1)^{k-1}}{2k-1}$$

Notations: $\{a_n\}, \{a_n\}_{n=3}^{\infty}, \{a_n\}_{n\geq 3}, (a_n), (a_n)_{n=3}^{\infty}, (a_n)_{n\geq 3}$

Some exercises on listing a sequence given a formula for the general term or a recursive formula (see worksheet).

Some exercises on finding the general term based on the first few terms.

Increasing sequence: $a_{n+1} \ge a_n$ for every index nDecreasing sequence: $a_{n+1} \le a_n$ for every index n

Example: the sequence $a_n = \frac{2^n}{2n-1}$ is increasing for $n \ge 2$ but not for $n \ge 1$. How to prove? Note that $a_n > 0$. Show that either $a_{n+1} - a_n < 0$ or $\frac{a_{n+1}}{a_n} < 1$.