A sequence is said to be monotone if it is increasing or decreasing. **Example:** show that the sequence $a_n = 2^n/n$ is increasing. Two common methods:

- Show that a_{n+1} a_n ≥ 0 for all n
 Show that a_{n+1}/a_n ≥ 1 for all n

Note that listing terms of the sequence and see the increasing/decreasing trend doesn't constitute a proof. There is no guarantee that this trend will continue forever. You must use a valid argument to establish the fact that $a_{n+1} \ge a_n$ (or $a_{n+1} \le a_n$) for all n.

Work on an example on the worksheet.

A sequence is bounded from above by *M* if $a_n \leq M$ for all index *n*. A sequence is bounded from below by *m* if $a_n \ge m$ for all index *n*.

Important facts:

If a sequence is increasing and bounded from above, then it must have a limit. If a sequence is decreasing and bounded from below, then it must have a limit.