Friday, March 21, 2025 1:44 PM

Integral Test:

If $a_n = f(n)$ and f is an decreasing and nonnegative function on an interval [0, M] then $\sum a_n$ converges if and only if $\int_M^\infty f(x)dx < \infty$.

Why?

Since each
$$a_n \ge 0$$
, we need to explain why $\sum a_n < \infty$. For $n > M$, $a_n = f(n) = \int_{n-1}^n f(n) dx \le \int_{n-1}^n f(x) dx$

$$\sum_{M+1}^{\infty}a_n\leq\sum_{M+1}^{\infty}\int_{n-1}^nf(x)dx=\int_{M}^{\infty}f(x)dx<\infty$$

Examples:

p-series $\sum \frac{1}{n^p}$

$$\sum \frac{1}{n^2+1}$$

$$\sum \frac{1}{\ln n}$$

$$\sum \frac{1}{n^3-n}$$