The Comparison principle has several variations. Analogy: if you score equally or better than your classmate in every assignment and he passes the class, then you should also pass the class.

Comparison principle 1: Assume that $0 \le a_n \le b_n$ for all n.

- If ∑ b_n converges then so does ∑ a_n.
 If ∑ a_n diverges then so does ∑ b_n.

Examples:

$$\sum rac{1}{n2^n}$$
 , $\sum rac{1}{n(n^2+1)}$, $\sum rac{1}{n+\sqrt{n}}$

The last one may be a little tricky. Note that

$$\frac{1}{n+\sqrt{n}} \ge \frac{1}{n+n} = \frac{1}{2}\frac{1}{n}$$

Then

$$\sum \frac{1}{n+\sqrt{n}} \ge \frac{1}{2} \sum \frac{1}{n} = \infty$$

Comparison principle 2: Assume $|a_n| \le b_n$ for all *n*. If $\sum b_n$ converges then so does $\sum a_n$.

Example: $\sum \frac{\sin n}{n^2}$

Comparison principle 3:

- If $\sum b_n$ converges and $\lim \frac{a_n}{b_n}$ exists (not ∞) then $\sum a_n$ also converge.
- If $\sum b_n$ diverges, $b_n > 0$, and $\lim \frac{a_n}{b_n} > 0$ (possibly ∞) then $\sum a_n$ also diverge.

Example:

 $\sum \frac{1}{n^2 - 4}$