Lecture 43

Thursday, March 27, 2025 2:18 AM

Alternating series is a series of the form

$$\sum (-1)^n b_n = -b_1 + b_2 - b_3 + b_4 - \cdots$$
or
$$\sum (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$
where $b_n > 0$ for all n .

Examples and non-examples:

$$\sum \frac{(-1)^n}{n^2}$$

$$\sum \sin n$$

$$\sum (-1)^n \sin n$$

Alternating Series Test (for convergence):

If b_n is a decreasing sequence and $\lim b_n = 0$ then the series converges.

Visualization: Imagine a pendulum swinging back and forth:

- At first, it swings wide a big arc to the right (like adding b_1),
- Then swings back to the left, but not as far (subtracting b_2),
- Then right again, but less than before $(+b_3)$,
- Then left again, smaller swing $(-b_4)$,
- And so on...

Each swing is smaller than the last, and over time the pendulum comes to rest at a central point.

Exercises:

$$\sum (-1)^n \frac{n}{n+1}$$

$$\sum \frac{(-1)^n}{2^n}$$

$$\sum (-1)^n \frac{n^2}{2^n}$$

$$\sum (-1)^n (\sqrt{n+1} - \sqrt{n})$$