Friday, January 17, 2025

1:56 AM

We have discussed how to find integrals of the form $\int \sin^m x \cos^n x \, dx$. There is another type of trigonometric integral that is mentioned in the textbook, namely

$$\int \tan^m x \sec^n x \, dx$$

If either m is odd or n is even, this type of integral is simpler compared to the former one. The strategy is to use substitution $u = \tan x$ (if n is even) or $u = \sec x$ (if m is odd). Keep in mind that:

$$(\sec x)' = \tan x \sec x$$

$$(\tan x)' = \sec^2 x$$

$$\tan^2 x = \sec^2 x - 1$$

Example: $\int tan x sec^3 x dx$

Here, n = 3 is odd. Let $u = \sec x$. Then $du = u'dx = \tan x \sec x dx$.

$$\int \tan x \sec^3 x \, dx = \int \sec^2 x \tan x \sec x \, dx = \int u^2 du = \frac{u^3}{3} + C = \frac{\sec^3 x}{3} + C$$

Example: $\int \tan x \sec^4 x \, dx$

Here, n = 4 is even. Let $u = \tan x$. Then $du = u'dx = \sec^2 x dx$.

$$\int \tan x \sec^4 x \, dx = \int \tan x \sec^2 x \sec^2 x \, dx = \int \tan x \, (1 + \tan^2 x) \sec^2 x \, dx$$

$$= \int u(1+u^2)du = \int (u+u^3)du = \frac{u^2}{2} + \frac{u^4}{4} + C = \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + C$$

Goal for this lecture and next lecture: deal with integrals that contain $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$ or $\sqrt{a^2 + x^2}$. For example,

$$\int \frac{1}{\sqrt{1-x^2}} dx, \int \sqrt{1-x^2} dx, \int \sqrt{3-x^2} dx, \int x^2 \sqrt{1-x^2} dx, \int \sqrt{1+x^2} dx, \int \frac{1}{\sqrt{2+3x^2}} dx$$

Note that we already knew at least one of them:
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

Tips:

For $\sqrt{a^2 - x^2}$, use the substitution $x = a \sin u$ or $x = a \cos u$.

For
$$\sqrt{x^2 - a^2}$$
, use the substitution $x = a \sec u$.

For
$$\sqrt{a^2 + x^2}$$
, use the substitution $x = a \tan u$.

Keep in mind the following identities:

$$\sqrt{1-\cos^2 u} = |\sin u|$$

$$\sqrt{1-\sin^2 u} = |\cos u|$$

$$\sqrt{\sec^2 u - 1} = |\tan u|$$

$$\sqrt{1 + \tan^2 u} = |\sec u|$$

Example: $\int_{0}^{\frac{1}{2}} \sqrt{1-x^2} dx$

Example:
$$\int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx$$

Example:
$$\int_0^5 \sqrt{1+x^2} dx$$