Homework 4

Consider the polynomial $f(x) = 2x^4 - 9x^3 + 18x - 4$.

- 1. Use Intermediate Value Theorem to show that f has a root in each of the intervals (-2, -1), (0, 1), (1, 2), (3, 4). Call these roots by r_1 , r_2 , r_3 , r_4 respectively.
- 2. Graph f(x) on the interval [-2, 4]. You may use GeoGebra and copy the graph onto paper by hand. For the best rendition, after you graph on GeoGebra, click on the gear icon \clubsuit on the top right. Choose Setting and change the axis ratio xAxis:yAxis to 1:20. Press Enter.
- 3. Just by looking at the graph, give a rough estimate for r_1, r_2, r_3, r_4 .
- 4. Use the Bisection method to find r_1 on the interval [a, b] = [-2, -1] with an allowable error of 0.01.
- 5. Use Newton-Raphson method to find r_3 with an allowable error of 0.0001. That is, you stop when $|x_{n+1} x_n| < 0.0001$.
- 6. The Gradient Descent method is normally used to find a local minimum. However, it can also be used to find a root. Notice that f(x) = 0 if and only if g(x) = 0, where $g(x) = f(x)^2$. Since g(x) is always nonnegative, 0 is its minimum value. Thus, the problem of finding a root of f can be translated to finding a number x at which g is minimum.
 - (a) Graph the function g(x) on the interval [0, 1]. On GeoGebra, you might want to change the axis ratio xAxis: yAxis to 1 : 100 for a good rendition.
 - (b) Find r_2 using the Gradient Descent method with initial guess $x_0 = 0$ and learning rate $\alpha = 0.0015$. Stop when $|g'(x_n)| < 0.1$.
 - (c) Do Part (b) with $\alpha = 0.0045$. What do you notice?
- 7. Just by looking at the graph of f(x) (not of g(x)), give a rough estimate for the maximum and minimum values of f on [-1, 2] and also the values of x where they are attained.
- 8. Find the maximum value of f on the interval [-1, 2] using the Gradient Ascent method with initial guess $x_0 = 0$ and learning rate $\alpha = 0.03$. Stop when $|f'(x_n)| < 0.01$.
- 9. In Calculus I, you learned how to find the maximum value of f on [-1, 2] by first solving the equation f'(x) = 0 for all critical numbers on that interval. It is tricky to find the exact solutions because f'(x) is a cubic polynomial. Instead, follow the steps below.
 - (a) Use Newton-Raphson method to solve for all critical numbers of f on [-1, 2]. Stop when $|x_{n+1} x_n| < 0.0001$.
 - (b) Use the critical numbers found in Part(a) to find the maximum value of f on [-1, 2].