
Name: (your name)

Lab 1

Some remarks before you start:

You are currently working on a Google Colab notebook, a convenient environment that allows you to write texts,
Python codes, and execute the codes. This notebook runs in a temporary virtual machine, which gets reset each
time you close the session. You will need to import the below Python packages again each time you start a
session.
The programming language used in this lab is Python, which serves as a tool to implement algorithms rather than
be a primary focus by itself. Therefore, technical details of Python that are not crucial to know for problem-solving
will be skipped.
You can double click on any cell to edit it or to learn how to type math objects (matrix, equations,...) or format text
(bolden, underline,...) Once inside a cell, you can execute it by pressing Shift+Enter.
Before submitting your report, remove all ouputs by clicking on Edit🠦Clear all ouputs. Then download your report
by clicking on File🠦Download🠦.ipynb. This is the file you will submit on Canvas.

In this lab, you will practice:

perform row operations on a matrix
solve a linear system of equations
solve a linear programming problem

Problems

1, 4, 6, 9

2, 3, 5

7, 8, 10

Readability of your report

Total: 10

Points

2

3

4

3

Total: 32

Execute the following code each time you start a session.

I. Import necessary Python packages

from numpy import* # import everything from the standard Python numeric package (NumPy)
from sympy import* # import everything from the standard Python symbolic-computing package (SymPy)
from scipy import* # import everything from the standard Python scientific-computing package (SciPy)

II. Matrix and row operations

A vector is an array of numbers. You enter an array using the command array. Entries are separated from each other by
commas.

Enter the vector as follows:a = [1, 2, 4]

a=array([1,2,4])
print(a)

A matrix is a two-dimensional array. You can view a matrix as an array of its rows, each of which is an array itself. For
example, you can view the matrix

as an array of three entries: , , . Therefore, you can enter this matrix as follows.

A =
⎡

⎣
⎢

1

3

1

2

2

0

−1

0

2

⎤

⎦
⎥

[1, 2, −1] [3, 2, 0] [1, 0, 2]

A=array([[1,2,-1],[3,4,0],[1,0,2]],dtype=float64)
print(A)

Each entry of an array can be accessed by its index. In Python, the starting index is 0 (not 1). Run the code and write your
observation:

Exercise 1

print(a[0])
print(a[1])
print(a[2])
print(a[3])

You can multiply a vector by a number or add two vectors of the same length. Explain what each of the following
commands does.

Exercise 2

print(3*a)
b=array([3,5,2])
print(b)
print(a+b)
c=a+2*b
print(c)

Exercise 3

You can perform row operations on a matrix, such as subtracting three times of the first row from the second row and
subtracting the first row from the third row:

A[1] = A[1] - 3*A[0]
A[2] = A[2] - A[0]
print(A)

Continue to do more row operations to turn matrix into a reduced row echelon form (RREF).A

You can use the built-in command rref to find the RREF of a matrix. Try the following:

Exercise 4

A=Matrix([[1,2,-1],[3,4,0],[1,0,2]])
A.rref()[0]

Note:

The reason why we write A.rref()[0] instead of just A.rref() is because the former command gives us exactly what
we need (the RREF of matrix), whereas the latter command gives some additional information that we are not
interested in.
In order to use the built-in command rref, you need to enter the matrix using Matrix (as above) instead of array. The
reason is a little bit technical: rref is built in the SymPy package, not NumPy package. Matrix command generates

A

an object in the SymPy package, whereas array command generates an object in the NumPy package.

Use the built-in rref command to find the RREF of the following matrix:

B =

⎡

⎣

⎢⎢⎢

2

3

0

−3

−4

−4

1

5

2

5

1

4

⎤

⎦

⎥⎥⎥

III. Linear system of equations

Consider the following linear system of equations:

Write the matrix associated with this system.
Use the command rref to find the RREF of this matrix.
Solve the system based on the RREF you just found.

Exercise 5

x + y + z = 4

x + 2y + 4z = 12

2x − 3y − z = 4

You can use the built-in command linalg.solve to solve a linear system. For example, consider the system

This system has a coefficient matrix:

and a right-hand-side vector:

You will enter maxtrix , array , and use the command linalg.solve as follows.

Exercise 6

x + 2y − z = 4

3x + 4y = 5

2x + z = 3

A =
⎡

⎣
⎢

1

3

2

2

4

0

−1

0

1

⎤

⎦
⎥

b =
⎡

⎣
⎢

4

5

3

⎤

⎦
⎥

A b

A=array([[1,2,-1],[3,4,0],[2,0,1]])
b=array([4,5,3])
linalg.solve(A,b)

Note: the command linalg.solve can successfully solve a system only if it has a unique solution (like in the example
above). If the system does not have a solution (inconsistent system) or has infinitely many solutions, linalg.solve will
throw an error. In that case, you need to find the RREF of the associated matrix and use it to solve the system (as in the
Exercise 5).

Solve the linear system in Exercise 5 using linalg.solve.

Exercise 7

Balance the following chemical equation

In other words, find positive intergers such that

Hint: You will need to write down the system of linear equations, its associated matrix, and find its RREF. You will notice
that this system has infinitely many solutions. Just choose one solution in which are all integers.

KMn + HCl → KCl + MnC + O + CO4 l2 H2 l2
, , . . . ,x1 x2 x6

KMn + HCl = KCl + MnC + O + Cx1 O4 x2 x3 x4 l2 x5 H2 x6 l2

, , . . . ,x1 x2 x6

IV. Linear programming

Consider a linear programming problem of minimizing subject to

To solve this problem using the simplex method, you will first convert it into a standard form: maximizing
subject to

Next, you introduce slack variables to turn all inequalities to equalities: maximizing subject to

Notice that the third equation has been multiplied by to ensure that the right hand side is nonnegative. You rewrite
the equation as

making sure that the coefficient of is (not).

Next, you construct the matrix associated with the system of the above four equations:

C = −2x + y

x − y ≤

2x + 3y ≤

x + y ≥

x, y ≥

3

12

2

0

P = 2x − y

x − y ≤

2x + 3y ≤

−x − y ≤

x, y ≥

3

12

− 2

0

P = 2x − y

x − y + =s1

2x + 3y + =s2

x + y − =s3

x, y, , , ≥s1 s2 s3

3

12

2

0
(−1)

P = 2x − y

−2x + y + P = 0

P 1 −1

A =

⎡

⎣

⎢⎢⎢

1

2

1

−2

−1

3

1

1

1

0

0

0

0

1

0

0

0

0

−1

0

0

0

0

1

3

12

2

0

⎤

⎦

⎥⎥⎥

A=array([[1,-1,1,0,0,0,3],[2,3,0,1,0,0,12],[1,1,0,0,-1,0,2],[-2,1,0,0,0,1,0]],dtype=float64)
print(A)

Your next goal is to use row operations to turn the matrix into the following form:

The key column is the first column and the pivot element is on the third row. You then use elementary row operations
to turn the key column into a column that has at the pivot element and 's elsewhere.

1

1 0

A[0] = A[0] - A[2]
A[1] = A[1] - 2*A[2]
A[3] = A[3] + 2*A[2]
print(A)

The key column is now the fifth column and the pivot element is on the first row. You then use elementary row
operations to turn the key column into a column that has at the pivot element and 's elsewhere. Note that the
operation is not acceptable because it would change the sixth column, which you do not want to
change (see the figure above).

1

1 0

= +R2 R2 R4

A[1] = A[1] - 2*A[0]
A[2] = A[2] + A[0]
A[3] = A[3] + 2*A[0]
print(A)

The key column is now the second column and the pivot element is on the second row. You then use elementary row
operations to turn the key column into a column that has at the pivot element and 's elsewhere.

5

1 0

A[1] = 1/5*A[1]
A[0] = A[0] + 2*A[1]
A[2] = A[2] + A[1]
A[3] = A[3] + A[1]
print(A)

This matrix is already in the desirable form. It corresponds to the linear system

The maximum value of is and it is attained when . Substituting into the system, you
can easily see that and . We conclude that the minimum value of is and it is attained when

 and .

0.2 + 0.4 + = 3.4s1 s2 s3

y − 0.4 + 0.2 = 1.2s1 s2

x + 0.6 + 0.2 = 4.2s1 s2

1.6 + 0.2 + P = 7.2s1 s2

P 7.2 = = 0s1 s2 = = 0s1 s2

x = 4.2 y = 1.2 C −7.2

x = 4.2 y = 1.2

Exercise 8

Use the simplex method (as illustrated above) to solve the following linear programming problem:

Maximize subject toP = x + 4y − z

x − y ≥ −4

3x − y + z ≥ 0

2x + 2y + z ≤ 2

x, y, z ≥ 0

You can use the built-in command optimize.linprog to solve a linear programming problem. To use this command, your
problem must be

a minimizing problem,
all constraints are of the form ,
all variables are nonnegative.

Exercise 9

≤

For example, consider a linear programming problem discussed earlier: minimize subject to

This problem is already a minimizing problem. Only the third inequality needs to be reversed. You rewrite the problem as:
minimize subject to

The array of coefficients in the objective function is

The matrix of coefficients in the constraints is

The array of the right-hand-side of the constraints is

Now you can use optimize.linprog to solve the problem as follows.

C = −2x + y

x − y ≤

2x + 3y ≤

x + y ≥

x, y ≥

3

12

2

0

C = −2x + y

x − y ≤

2x + 3y ≤

−x − y ≤

x, y ≥

3

12

− 2

0
−2x + y

c = [−2, 1]

A =
⎡

⎣
⎢

1

2

−1

−1

3

−1

⎤

⎦
⎥

b = [3, 12, −2]

c = array([-2,1])
A = array([[1,-1],[2,3],[-1,-1]])
b = array([3,12,-2])
opt = optimize.linprog(c,A,b)
print(opt)

The output says that the minimum value of the objective function is and it is attained at and .

Use optimize.linprog to solve Exercise 8.

−7.2 x = 4.2 y = 1.2

A candy company makes three types of candy (solid, fruit, and cream-filled) and packages these candies in three
different assortments. A box of assortment I contains 4 solid, 4 fruit, 12 cream and sells for $9.40. A box of assortment
II contains 12 solid, 4 fruit, 4 cream and sells for $7.60. A box of assortment III contains 8 solid, 8 fruit, 8 cream and sells
for $11.00. The manufacturing costs per candy are $0.20 for solid, $0.25 for fruit, and $0.30 for cream. The company
can manufacture up to 4800 solid, 4000 fruit, and 5600 cream candies weekly. How many boxes of each type should the
company produce in order to maximize profit? What is their maximum profit?

Setup the linear programming model. Then use optimize.linprog to solve it.

Exercise 10

