Euler's method is an example of a more general method for numerically solving differential equations called *finite difference method*. The idea is that you approximate the derivative by the difference quotient.

Example:

$$y'(x) \approx \frac{y(x+h) - y(x)}{h}$$

$$y'(x) \approx \frac{y(x) - y(x-h)}{h}$$

$$y''(x) \approx \frac{y'(x+h) - y'(x)}{h} \approx \frac{\frac{y(x+h) - y(x)}{h} - \frac{y(x) - y(x-h)}{h}}{h}$$

$$= \frac{y(x+h) - 2y(x) + y(x-h)}{h^2}$$

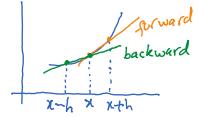
To see how good these approximations are when *h* gets smaller and smaller, we use the **Taylor expansion**:

$$y(x+h) = y(x) + y'(x)h + \frac{y''(x)}{2!}h^2 + \frac{y'''(x)}{3!}h^3 + O(h^4)$$

By replacing h with
$$-h$$
, we see that
 $y'(x) = \frac{y(x+h) - y(x)}{h} + O(h)$
 $y'(x) = \frac{y(x) - y(x-h)}{h} + O(h)$
 $y'(x) = \frac{y(x+h) - y(x-h)}{2h} + O(h^2)$
 $y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} + O(h^2)$

The O(h) notation means "of order h", which means a quantity whose absolute value is less than or equal to ch for some constant c.

The first equation is called *forward difference approximation* for derivative. The second equation is called *backward difference approximation* for derivative. The third equation is called *centered difference approximation* for derivative. The four equation is called *centered difference approximation* for second derivative.



Example: y'' + xy' + y = 1, y(-1) = 2, y'(-1) = 1 $y(x_n) = y_n$ Let us use the centered difference approximation for y'':

$$y''(x_n) \approx \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2}$$

This approximation is of order h^2 as h gets small.

If you choose the approximation $y'(x_n) \approx \frac{y_n - y_{n-1}}{h}$ then the differential equation is approximated by

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} + x_n \frac{y_n - y_{n-1}}{h} + y_n = 1$$

This yields

 $y_{n+1} = (2 - h^2 - hx_n)y_n + (hx_n - 1)y_{n-1} + h^2$ (1) Because the approximation of derivative is of order *h* while the approximation of second derivative is of order h^2 , the combined approximation is of order *h* (the worse of the two approximations).

On the other hand, if you choose the approximation $y'(x_n) \approx \frac{y_{n+1}-y_{n-1}}{2h}$, which is of order h^2 then the combined approximation is also of order h^2 .

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} + x_n \frac{y_{n+1} - y_{n-1}}{2h} + y_n = 1$$

This yields

$$y_{n+1} = \frac{(2-h^2)y_n + \left(\frac{hx_n}{2} - 1\right)y_{n-1} + h^2}{1 + \frac{hx_n}{2}}$$
(2)

To compute y_{n+1} , you need to know y_n and y_{n-1} . You know $y_0 = 2$. How to find y_1 ? Once you have y_1 , you will be able to find y_2 , y_3 , y_4 , ... using the above recursive formula ((1) or (2), depending on how you approximate the first derivative).

If you choose the forward difference approximation for y' then y_1 is easy to find:

$$y'(x_0) \approx \frac{y_1 - y_0}{h}$$

$$y_1 \approx y_0 + hy'(x_0) = 2 + h$$

we the contered difference a

If you choose the centered difference approximation for y' then

$$y'(x_0) \approx \frac{y_1 - y_{-1}}{2h}$$

which yields $y_1 = y_{-1} + 2h$. Applying (2) for n = 0, you get y_1 in terms of y_0 (known) and y_{-1} . From there, you can solve for y_1 (as well as y_{-1}).

Exercise: with step size h = 0.1, approximate y(-0.7) using the recursive formula (1). Compare it with the true solution $y(x) = 1 + e^{(1-x^2)/2}$.

Python code: (using recursive formula (1))

```
from numpy import *
from matplotlib.pyplot import *
# solve y''+xy'+y=1 with initial condition y(x0)=a and y'(x0)=b
x0 = -1
a = 2
b = 1
# with step size h
h = 0.1
# the number of steps
N = 20
# Array x = [x0, x1, ..., xN]
x = linspace(x0, x0+N*h, N+1)
# Array y = [y0,y1,...,yN]
y = zeros(N+1)
y[0] = a
y[1] = a+b*h
for n in range (1, N):
    y[n+1] = (2-h**2-h*x[n])*y[n] + (h*x[n]-1)*y[n-1] + h**2
plot(x,y)
plot(x, 1+e^{*}((1-x^{*}2)/2))
show()
```