Lecture 29

Monday, April 7, 2025 9:30 AM

Let us consider an application of neuron networks for solving the differential equation u’ = x (without a

2
specified initial condition). We know that the correct solution is u(x) = x? +C.

Consider the simplest neuron network with one layer and one node:
x—->z-0(z)->y=1kx)

Here,z = ax + bandy = ca(z) + d = ca(ax + b) + d. The activation function can be any

nonlinear function, such as o(x) = sinx.

We wish, by choosing suitable coefficients a, b, ¢, d and activation function o, that @ satisfy @i’ = x
for all values of x. With a fixed choice of function o, it seems almost impossible to choose a, b, ¢, d
such that @' (x) = x for all x. The difficulty is the high demand "for all".

We will relax the requirement "for all" to for certain prescribed values of x, say x4, x5, ..., x,,, called
grid points. That is to require #i(x;) — x; = O foralli = 1,2 ..., n. These are n equations, while we
have 4 unknown coefficients to work with. The new requirement demands that n < 4, which lays
quite a severe restriction on n. We further relax this requirement by only requiring the quantity

b= @) - %)
i=1

to be as small as possible. ¢ is called an error function because it measures the error. It is also called
a cost function because it is to be minimized. You can notice that ¢ only dependson a, b, c, d.

n

¢(a,b,c,d) = E(CG(axi +b) +d — x;)?

i=1

Therefore, the problem is to find 4 numbers a, b, ¢, d that minimize the function ¢(a, b, ¢, d). You
already knew how to do this numerically--by using Gradient Descent method:

Initial guess: ag, by, ¢y, dy

Update: (@n+1, bn+1, Cnt1, dns1) = (@n, by, Cn, dy) — aV(ay, by, cp, dn)
where a > 0 is the learning rate.

After a number of steps, we stop and take the value of a, b, ¢, d to be a,, b, ¢, d;,. These values
gives us a function @i(x) = ca(ax; + b) + d, which is an approximation of the true function u.

Since u is not unique (u = x2/2 + C), how do we know which of these possibilities of u is the one
that @ approximate? Recall that & approximates u in the sense that @i’ (x) = x. Thus, i may not

2
approximate any functions of the function x? +C.

Lecture-29 Page 1

Python code:

from autograd.numpy import*
from autograd import elementwise_grad as diff
from matplotlib.pyplot import*

x_grid = np.linspace(0.0,0.5,9)
a0,b0,c0,d0 = 1.,1.,1.,1.

alpha = 0.1

num_iter = 1000

def sigma(x):
return sin(x)
def z(x,a,b,c,d): return a*x + b
def u(x,a,b,c,d): return c*sigma(z(x,a,b,c,d)) + d
def du(x,a,b,c,d): return diff(u,0)(x,a,b,c,d)
def phi(a,b,c,d):
return sum([(du(t,a,b,c,d) - t)**2 for t in x_grid])

def gradd(phi,a®@,b0,c0,d0,alpha,num_iter):
a,b,c,d = a0,b0,co0,do
dphi = diff(phi, (0,1,2,3))
for i in range(num_iter):
gradient = array(dphi(a,b,c,d))
a,b,c,d = array([a,b,c,d]) - alpha*gradient
return a,b,c,d

a,b,c,d = gradd(phi,a0,b0,c0,d0,alpha,num_iter)

print('[a,b,c,d] =",array([a,b,c,d]))
print("Initial error: ",phi(a@,b0,c0,d0))
print("Final error: ",phi(a,b,c,d))

x = linspace(9,0.5,20)

du_appr = array([du(t,a,b,c,d) for t in x])
du_exact = x

print("Max absolute difference: ",max(abs(du_appr-du_exact)))
plot(x,du_appr,label="approximate sol')
plot(x,du_exact,label="exact sol')

legend()

show()

Lecture-29 Page 2

