
Let us consider an application of neuron networks for solving the differential equation 𝑢ᇱ ൌ 𝑥 (without a

specified initial condition). We know that the correct solution is 𝑢ሺ𝑥ሻ ൌ ௫మ

ଶ
⎯⎯൅ 𝐶.

Consider the simplest neuron network with one layer and one node:
𝑥 → 𝑧 → 𝜎ሺ𝑧ሻ → 𝑦 ൌ 𝑢෤ሺ𝑥ሻ

Here, 𝑧 ൌ 𝑎𝑥 ൅ 𝑏 and 𝑦 ൌ 𝑐𝜎ሺ𝑧ሻ ൅ 𝑑 ൌ 𝑐𝜎ሺ𝑎𝑥 ൅ 𝑏ሻ ൅ 𝑑. The activation function can be any
nonlinear function, such as 𝜎ሺ𝑥ሻ ൌ sin 𝑥.

We wish, by choosing suitable coefficients 𝑎, 𝑏, 𝑐,𝑑 and activation function 𝜎, that 𝑢෤ satisfy 𝑢෤ᇱ ൌ 𝑥
for all values of 𝑥. With a fixed choice of function 𝜎, it seems almost impossible to choose 𝑎, 𝑏, 𝑐,𝑑
such that 𝑢෤ᇱሺ𝑥ሻ ൌ 𝑥 for	all	𝑥. The difficulty is the high demand "for all".

We will relax the requirement "for all" to for certain prescribed values of 𝑥, say 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, called
grid	points. That is to require 𝑢෤ሺ𝑥௜ሻ െ 𝑥௜ ൌ 0 for all 𝑖 ൌ 1,2 … ,𝑛. These are 𝑛 equations, while we
have 4 unknown coefficients to work with. The new requirement demands that 𝑛 ൑ 4, which lays
quite a severe restriction on 𝑛. We further relax this requirement by only requiring the quantity

𝜙 ൌ෍ሺ𝑢෤ሺ𝑥௜ሻ െ 𝑥௜ሻଶ
௡

௜ୀଵ

to be as small as possible. 𝜙 is called an error	function because it measures the error. It is also called
a cost	function because it is to be minimized. You can notice that 𝜙 only depends on 𝑎, 𝑏, 𝑐,𝑑.

𝜙ሺ𝑎, 𝑏, 𝑐,𝑑ሻ ൌ෍ሺ𝑐𝜎ሺ𝑎𝑥௜ ൅ 𝑏ሻ ൅ 𝑑 െ 𝑥௜ሻଶ
௡

௜ୀଵ

Therefore, the problem is to find 4 numbers 𝑎, 𝑏, 𝑐,𝑑 that minimize the function 𝜙ሺ𝑎, 𝑏, 𝑐,𝑑ሻ. You
already knew how to do this numerically--by using Gradient Descent method:

Initial guess: 𝑎଴,𝑏଴, 𝑐଴,𝑑଴
Update: ሺ𝑎௡ାଵ, 𝑏௡ାଵ, 𝑐௡ାଵ,𝑑௡ାଵሻ ൌ ሺ𝑎௡, 𝑏௡, 𝑐௡,𝑑௡ሻ െ 𝛼∇𝜙ሺ𝑎௡, 𝑏௡, 𝑐௡,𝑑௡ሻ
where α ൐ 0 is the learning rate.

After a number of steps, we stop and take the value of 𝑎, 𝑏, 𝑐,𝑑 to be 𝑎௡, 𝑏௡, 𝑐௡,𝑑௡. These values
gives us a function 𝑢෤ሺ𝑥ሻ ൌ 𝑐𝜎ሺ𝑎𝑥௜ ൅ 𝑏ሻ ൅ 𝑑, which is an approximation of the true function 𝑢.

Since 𝑢 is not unique ሺ𝑢 ൌ 𝑥ଶ/2 ൅ 𝐶ሻ, how do we know which of these possibilities of 𝑢 is the one
that 𝑢෤ approximate? Recall that 𝑢෤ approximates 𝑢 in the sense that 𝑢෤ᇱሺ𝑥ሻ ൎ 𝑥. Thus, 𝑢෤ may not

approximate any functions of the function ௫
మ

ଶ
⎯⎯൅ 𝐶.

Lecture 29
Monday, April 7, 2025 9:30 AM

 Lecture-29 Page 1

Python	code:

from autograd.numpy import*
from autograd import elementwise_grad as diff
from matplotlib.pyplot import*

x_grid = np.linspace(0.0,0.5,9)
a0,b0,c0,d0 = 1.,1.,1.,1.
alpha = 0.1
num_iter = 1000

def sigma(x):
return sin(x)

def z(x,a,b,c,d): return a*x + b
def u(x,a,b,c,d): return c*sigma(z(x,a,b,c,d)) + d
def du(x,a,b,c,d): return diff(u,0)(x,a,b,c,d)
def phi(a,b,c,d):

return sum([(du(t,a,b,c,d) ‐ t)**2 for t in x_grid])

def gradd(phi,a0,b0,c0,d0,alpha,num_iter):
a,b,c,d = a0,b0,c0,d0
dphi = diff(phi,(0,1,2,3))
for i in range(num_iter):

gradient = array(dphi(a,b,c,d))
a,b,c,d = array([a,b,c,d]) ‐ alpha*gradient

return a,b,c,d

a,b,c,d = gradd(phi,a0,b0,c0,d0,alpha,num_iter)

print('[a,b,c,d] =',array([a,b,c,d]))
print("Initial error: ",phi(a0,b0,c0,d0))
print("Final error: ",phi(a,b,c,d))
x = linspace(0,0.5,20)
du_appr = array([du(t,a,b,c,d) for t in x])
du_exact = x
print("Max absolute difference: ",max(abs(du_appr‐du_exact)))
plot(x,du_appr,label='approximate sol')
plot(x,du_exact,label='exact sol')
legend()
show()

 Lecture-29 Page 2

