Lecture 6

Monday, January 27, 2025 9:36 PM

Finish the example last time.

After Step 1 and Step 2, we have turned the linear programming problem into:

Maximize P = 2x - y subject to $x - y + s_1 = 3$ $2x + 3y + s_2 = 12$ $x + y - s_3 = 2$ $x, y, s_1, s_2, s_3 \ge 0$

Step 3: write and manipulate the associated matrix to turn it into the following form:

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & -1 \\ -2 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 12 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$
 want to keep this column unchanged these 30

Algorithm:

- Identify the key column. This is the column containing the "most" negative entry of the last row.
- Identify the pivot element on the key column. This is the element $a_j > 0$ such that the quotient b_j/a_j , where b_j is the far right coefficient on row j, is smallest. This guarantees that the coefficients on the right hand side is always nonnegative.
- Use elementary row operations to turn the key column into a column in which that pivot element becomes 1 and the rest become 0s.
- Go back to the first step. Stop when a desirable form is achieved: all coefficients on the left of the column of *P* on the bottom row are nonnegative.

After a number of row operations, we obtain the following matrix:

٢0	0	4/5	2/5	1	0	ן 17/5	
0	1 -	- 2/5	1/5	0	0	6/5	
1	0	3/5	1/5	0	0	21/5	
0	0	8/5	1/5	0	1	36/5	

This matrix corresponds to the following system of equations:

$\frac{4}{5}s_1$	$+\frac{2}{5}s_2 + s_3 = \frac{17}{5}$
y —	$\frac{2}{5}s_1 + \frac{1}{5}s_2 = \frac{6}{5}$
<i>x</i> +	$\frac{3}{5}s_1 + \frac{1}{5}s_2 = \frac{21}{5}$
$\frac{8}{5}s_1$	$+\frac{1}{5}s_2 + P = \frac{36}{5}$

Note that P (what we want to maximize) only appears in the last equation:

$$\mathbf{P} = \frac{36}{5} - \frac{8}{5}s_1 - \frac{1}{5}s_2 \le \frac{36}{5}$$

max P = 36/5. The equality occurs when $s_1 = s_2 = 0$, which implies x = 21/5, y = 6/5.