

Lecture 1

Friday, January 9, 2026 3:19 PM

Consider some equations:

1) $3x + 7 = 0$. This is easy to solve: $x = -7/3$.

2) $3x^2 + 7x - 1 = 0$. This is also easy, although more complicated: $x = \frac{-7 \pm \sqrt{(-7)^2 - 4(3)(-1)}}{6}$.

3) $3x^3 + 7x - 1 = 0$. This is a cubic equation. The solution is given by a highly complicated formula, called [Cardano's formula](#) (1545).

Even if an exact form of the solution is available, in practice one only uses an approximate value. One reason is because of rounding off. The question is, given a certain threshold of error, can one find an approximate solution within that threshold?

Let's consider an example: find all real solutions to $x^3 - 3x + 1 = 0$.

You would try to factor the cubic polynomial $f(x) = x^3 - 3x + 1$. However, it doesn't have a rational root. You know that it has at most 3 roots because f is a polynomial of degree 3.

Recall the **Intermediate Value Theorem**: (you learned in Calculus I)

Let f be a continuous function on $[a, b]$ and let m be a number between $f(a)$ and $f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = m$.

Notice that

$$f(-2) = -1 < 0,$$

$$f(-1) = 1 > 0,$$

$$f(0) = 1 > 0,$$

$$f(1) = -1 < 0,$$

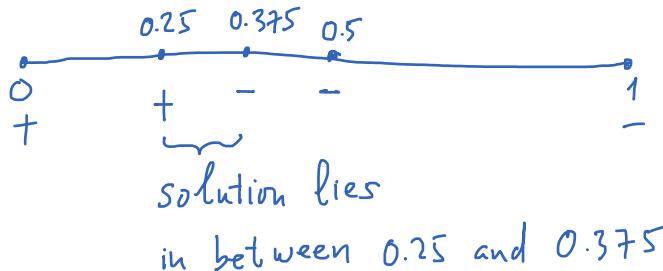
$$f(2) = 3 > 0.$$

The Intermediate Value Theorem implies that:

- There exists $c_1 \in (-2, -1)$ such that $f(c_1) = 0$.
- There exists $c_2 \in (0, 1)$ such that $f(c_2) = 0$.
- There exists $c_3 \in (1, 2)$ such that $f(c_3) = 0$.

Thus, we know that f has *exactly* three roots: one between -2 and -1 , one between 0 and 1 , and one between 1 and 2 .

How do we find, say, c_2 ? There is a very simple numerical method for this purpose, called *bisection method*.



Bisection method:

Step 1: find an interval $[a, b]$ such that $f(a)$ and $f(b)$ have different signs.

Step 2: if $f\left(\frac{a+b}{2}\right)$ and $f(a)$ have different signs then narrow the search interval to $\left[a, \frac{a+b}{2}\right]$. Otherwise, narrow the search interval to $\left[\frac{a+b}{2}, b\right]$.

Keep going until the search interval is thin enough.