

Numerical method to find order of convergence

Tuesday, January 27, 2026 3:10 AM

Let $\{x_n\}$ be a sequence that converges to x_* . You can find the order of convergence numerically. That is to find the number $p > 0$ such that $\epsilon_{n+1} \approx C\epsilon_n^p$, where $\epsilon_n = |x_n - x_*|$ is the error at the n 'th step. By taking the logarithm, you can write this equation as

$$\ln \epsilon_{n+1} \approx \ln C + p \ln \epsilon_n \quad (1)$$

For sufficiently large n (say $n > m$), x_{n-1} is almost equal to x_* . You can approximate

$$\epsilon_n = |x_n - x_*| \approx |x_n - x_{n-1}|$$

This means all error terms $\epsilon_2, \epsilon_3, \dots$ can be computed approximately from the sequence x_1, x_2, \dots

For some number N , you create two vectors of length N :

$$Y = [Y_1, Y_2, \dots, Y_N] = [\ln \epsilon_{m+1}, \ln \epsilon_{m+2}, \dots, \ln \epsilon_{m+N}]$$

$$X = [X_1, X_2, \dots, X_N] = [\ln \epsilon_m, \ln \epsilon_{m+1}, \dots, \ln \epsilon_{m+N-1}]$$

Equation (1) implies

$$Y_1 \approx \ln C + pX_1$$

$$Y_2 \approx \ln C + pX_2$$

...

$$Y_N \approx \ln C + pX_N$$

Thus, you are looking for a line $y = \ln C + px$ that best fits the points $(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N)$. The slope of this line is approximately the value of p (the order of convergence) and the y -intercept of this line is approximately $\ln C$. (You will need to exponentiate the y -intercept to get C .)

In MATLAB 2025, you use the code below to plot the line that best fits and find its slope and y -intersect:

```
f = fit(X, Y, 'poly1')
plot(f, X, Y, '*')
```