NS

001

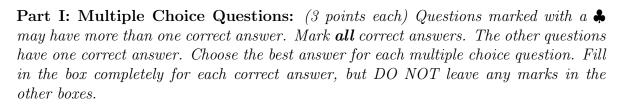
Math	21 3	3
Practi Midte	ice	2

Name:
Section:
Instructor:
Instructor:

Encode your BYU ID in the grid below
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 3 3 3 3 3 3
5 5 5 5 5 5 5
8 8 8 8 8 8 8 8

Instructions

- **A)** Do not write on the barcode area at the top of each page, or near the four circles on each page.
- **B**) Write your name, section number, and instructor in the space provided, and **COMPLETELY FILL IN** the correct boxes for your BYU ID and for the correct answers in the multiple choice section.
- C) Multiple choice questions that are marked with a \clubsuit may have more than one correct answer. You should mark all correct answers. All other questions have only one correct answer.
- **D**) Multiple choice questions are worth 3 points each.
- **E**) For questions which require a written answer, show all your work in the space provided and justify your answer. Simplify your answers where possible.
- **F**) No books, notes, or calculators are allowed.
- G) Do not talk about the test with other students until after the exam period is over.



1 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that projects **x** onto the y-axis. What are the eigenvalues of the standard matrix [T]?

- \bigcirc 0,2
- 0,1,-1
- $\prod 1,2$
- 1,-1
- 0,-1
- 0,1
- 0,1,2

2 \clubsuit Suppose A is an 5×5 diagonalizable matrix, with eigenvalues 0, 0, 1, 1, and 2 (counted with multiplicity). Which of the following statements must be true? Mark all that apply.

- The vector $\mathbf{v} = \mathbf{0}$ is an eigenvector corresponding to eigenvalue $\lambda = 0$.
- \square A is equal to a matrix with 0, 0, 1, 1, and 2 on the diagonal and 0 everywhere else.
- \bigcap rank A=3
- \square nullity A=2
- \square A is invertible.
- The dimension of the $\lambda = 1$ eigenspace is equal to 1.

3 ♣ Let

$$A = \begin{bmatrix} -4 & 7 & -7 \\ -5 & 7 & -6 \\ -5 & 4 & -3 \end{bmatrix}.$$

Which of the following vectors are eigenvectors of A? Mark all that apply.

- $\square \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$
- $\begin{bmatrix}
 2 \\
 1 \\
 -1
 \end{bmatrix}$

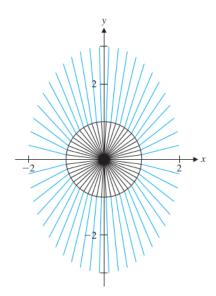
- 4 Compute $\det \begin{bmatrix} 5 & -3 & 2 \\ 1 & 0 & 2 \\ 2 & -1 & 3 \end{bmatrix}$.

 - 5

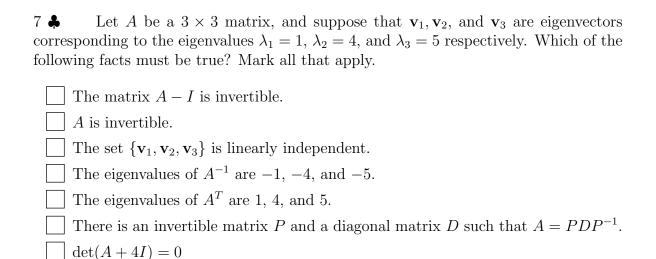
5 \clubsuit Let A and B be $n \times n$ matrices and k a constant. Which of the following is always correct? Mark all that apply.

- If A is row equivalent to B, then det(A) = det(B)
- $If A^2 = I_n, \det(A) = \pm 1.$

6 \clubsuit In the following picture, unit vectors \mathbf{x} are drawn (in black) along with their image $A\mathbf{x}$ (in blue) for a 2 × 2 matrix A, drawn head to tail. Based on the picture, what vectors appear to be eigenvectors of A. Mark all that apply.



- $[1,0]^T$
- $[0,1]^T$
- $[1,-1]^T$
- $[1,1]^T$
- $[0,0]^T$
- $[2,1]^T$



8 \clubsuit If A and B are similar matrices, then A and B share the same (mark all that apply):

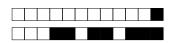
Eigenspaces

Eigenvalues

Determinant

Eigenvectors

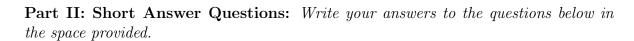
Characteristic polynomial



- Which of the following vectors are in $\mathrm{Span}([1,1,1]^T,[1,2,3]^T)$:
 - $[2,3,-3]^T$

 - $[2,3,4]^T$

- 10 The coordinate vector of the vector $[1,1]^T \in \mathbb{R}^2$ relative to the basis $\mathbf{v_1} = [1,2]^T, \mathbf{v_2} = [3,4]^T$ is
 - $[1/2, -1/2]^T$
 - $[1/2, 1/2]^T$
 - $[-1/2, 1/2]^T$
 - $[-1/2, -1/2]^T$



11 0 1 2 3 4 5 6 7 8 Administrative Use Only

a) The eigenvalues of the matrix

$$A = \begin{bmatrix} 3 & -2 & 0 \\ 0 & -1 & 11 \\ 0 & 0 & -12 \end{bmatrix}$$

are $\lambda = \underline{\hspace{1cm}}$, $\lambda = \underline{\hspace{1cm}}$, and $\lambda = \underline{\hspace{1cm}}$.

- b) If A is a 7×7 matrix, and $\lambda = 0$ is an eigenvalue of A with geometric multiplicity 2, then rank $A = \underline{\hspace{1cm}}$.
- c) Give the definition of the rank of a matrix A.
- d) Fill in the blank: let A be an $m \times n$ matrix. Then

 $rank(A) + \underline{\hspace{1cm}} = n.$

a)
$$\det \begin{bmatrix} 1 & 2 & -3 & 7 \\ 0 & -3 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \underline{\hspace{1cm}}$$

- b) Give the definition of a basis of a subspace S of \mathbb{R}^n .
- c) Give four different conditions equivalent to "A is an invertible matrix".
- d) If A is a non-invertible square matrix, $det(A) = \underline{\hspace{1cm}}$.
- e) True or False: 0 cannot be an eigenvalue of any matrix.
- f) True or False: If \mathbf{x} is an eigenvector of A with eigenvalue λ , then $2\mathbf{x}$ is another eigenvector of A with eigenvalue λ .

Part III: Free Response Questions: Neatly write complete solutions for these problems directly on the exam paper. Work on scratch paper will not be graded.

Diagonalize the matrix

$$A = \left[\begin{array}{rrr} 1 & -3 & -3 \\ 0 & -5 & -6 \\ 0 & 3 & 4 \end{array} \right].$$

In other words, find a diagonal matrix D and an invertible matrix P so that $A = PDP^{-1}$.

 $\begin{bmatrix} 0 & 2 & -4 & 5 \\ 4 & 0 & -4 & 8 \\ 3 & 0 & -5 & 8 \\ -2 & 1 & 3 & -3 \end{bmatrix}$. Be sure to show your work Compute the determinant of the matrix

and make clear what steps you are doing.

15 0 1 2 3 4 5 6 7 Administrative Use Only

Compute the eigenvalues and eigenvectors of $\begin{bmatrix} -1 & 1 \\ 6 & 0 \end{bmatrix}$.

Show that all the vectors orthogonal to $\mathbf{u} = [-7, 10, 5]^T \in \mathbb{R}^3$ form a subspace of \mathbb{R}^3

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that rotates points around the z-axis by an angle of π .

- (i) Show that T is a linear transformation, by using the definition of a linear transformation.
- (ii) Find the standard matrix of T.