Final Exam (16537454)

Due: Wed, Apr 22, 2020 11:59 PM MDT

Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Instructions

This exam is closed book. You are not allowed to use any notes, books, calculators, or other resources (online, print, or in-person). You are not allowed to speak to anyone about the contents of the exam until after the exam grades have been returned. You have 5 hours to complete the exam. Read all questions and instructions carefully. In some questions you must input your answers in a specific format which will be included in the instructions. Failure to follow instructions may result in losing points.

Please enter your NetID in all lowercase letters:

Please enter your BYU ID number with no spaces or dashes:

This exam is closed book. You are not allowed to use any notes, books, calculators, or other resources (online, print, or inperson). You are not allowed to speak to anyone about the contents of the exam until after the exam grades have been returned.

I will not use any notes, books, calculators, or other resources (online, print, or in-person). I will not speak to anyone about the contents of the exam until after the exam grades have been returned.

You have 5 hours to complete the exam.

Read all questions and instructions carefully. In some questions you must input your answers in a specific format which will be included in the instructions. Failure to follow instructions may result in losing points.

Problems 1-12

1. Let A be a 3×4 matrix corresponding to the coefficient matrix of a system with variables $x_{1}, x_{2}, x_{3}, x_{4}$ whose reduced row echelon form (RREF) is
$\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Which of the following must be true? Mark all that apply.$\operatorname{rank}(A)=2$A has a non-trivial null space.Variables x_{3} and x_{4} are free.If $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is consistent, it has infinitely many solutions.The columns of A span \boldsymbol{R}^{3}.$\operatorname{dim}(\operatorname{row}(A))=4$
2. Let $T: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ be the linear transformation that reflects \boldsymbol{x} over the line $y=-x$. What is the standard matrix [T] for this linear transformation?

- $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
- $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
- $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
- $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

O $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
3. Let A, B, C, X be $n \times n$ invertible matrices. If $\left(2 A X^{-1} B^{-1}\right)^{-1}=C$, solve for the matrix X.

- $\quad X=\frac{1}{2} B^{-1} C A$
- $X=2 B^{-1} A C$
- $X=\frac{1}{2} B^{-1} A C$
- $X=2 B^{-1} C A$
- $X=2 A^{-1} C B$
- $X=\frac{1}{2} A C B^{-1}$
- $X=\frac{1}{2} A C B$
- $\quad X=2 A B^{-1} C$

4. Let A be an $n \times n$ invertible matrix. Which of the following must be true? Mark all that apply.$\operatorname{det}(A)=0$The columns of A are linearly independent.nullity $(A)=0$$\operatorname{row}(A)=\boldsymbol{R}^{n}$$\operatorname{rank}(A)=n$$A \boldsymbol{x}=\boldsymbol{b}$ has infinitely many solutions for all \boldsymbol{b} in \boldsymbol{R}^{n}.The reduced row echelon form of A has a row of all zeroes.A^{T} is also invertible.
5. If $\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=6 \quad$ what is $\quad \operatorname{det}\left[\begin{array}{ccc}b & 2 a & c \\ e & 2 d & f \\ h & 2 g & i\end{array}\right]$?

- 12
- -12
- 6
- -6
- 2
- -2

0
6. Let A be a symmetric 4×4 matrix with eigenvalues $0,1,1,3$ and corresponding eigenvectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}$. Which of the following must be true? Mark all that apply.$A^{T}=A^{-1}$$A^{T}=A$$\operatorname{rank}(A)=3$$\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}=0$$A$ is invertible.A is orthogonally diagonalizable.Eigenvalue $\lambda=1$ has geometric multiplicity 2 .$x_{1}-x_{2}=\mathbf{0}$
7. Compute the characteristic polynomial of the matrix $\left[\begin{array}{rrr}-5 & 0 & 4 \\ 0 & 3 & 0 \\ -8 & 0 & 7\end{array}\right]$.

O $\quad-\lambda^{3}+5 \lambda^{2}-3 \lambda-9$

- $-\lambda^{3}+5 \lambda^{2}-6 \lambda+2$
$-\quad-\lambda^{3}+5 \lambda^{2}-6 \lambda$
- $-\lambda^{3}+5 \lambda^{2}-7 \lambda+3$
- $\quad-\lambda^{3}+5 \lambda^{2}-6 \lambda-8$
$-\quad-\lambda^{3}+5 \lambda^{2}+6 \lambda$
- None of the above.

8. The matrix $\left[\begin{array}{rrr}-5 & 0 & 4 \\ 0 & 3 & 0 \\ -8 & 0 & 7\end{array}\right]$ (the same matrix as in the problem above) is similar to which of the following diagonal matrices?

- $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$
- $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $\left[\begin{array}{rrr}6 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
- $\left[\begin{array}{rrr}3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$

O $\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]$

- This matrix is not diagonalizable.
- The matrix is diagonalizable, but not similar to any of the above.

9. If A is an $n \times n$ matrix with eigenvalue $\lambda=3$ and corresponding eigenvector \boldsymbol{x}, which of the following is true? Mark all that apply.$2 \boldsymbol{x}$ is an eigenvector of A with eigenvalue 6.
$\square \quad 9$ is an eigenvalue of A^{2}.
\square If A is invertible, $A^{-1} \boldsymbol{x}=\frac{1}{3} \boldsymbol{x}$.
$\square(A-3 I) \boldsymbol{x}=0$
$\square \boldsymbol{x}=0$

- $\operatorname{rank}(A-3 I)=n$

10. Let A be a 3×5 matrix with rank 3 . Which of the following statements must be true? Mark all that apply.The equation $A \boldsymbol{x}=\mathbf{0}$ has a unique solution.The equation $A \boldsymbol{x}=\mathbf{0}$ has infinitely many solutions.The equation $A \boldsymbol{x}=\boldsymbol{b}$ has a solution for all \boldsymbol{b} in \boldsymbol{R}^{3}.There is a \boldsymbol{b} in \boldsymbol{R}^{3} such that the equation $A \boldsymbol{x}=\boldsymbol{b}$ does not have a solution.The columns of A span \boldsymbol{R}^{3}.The columns of A are linearly independent.The rows of A span \boldsymbol{R}^{5}.The rows of A are linearly independent.
11. Let U be an $n \times n$ orthogonal matrix. Which of the following statements must be true? Mark all that apply.U has orthonormal rows.The columns of U are a basis for \boldsymbol{R}^{n}.U is orthogonally diagonalizable.$U U^{T}=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
$\square \quad \operatorname{nullity}(U)=n$
$\square \quad$ If λ is an eigenvalue of U, then $|\lambda|=1$.
$\square \quad \boldsymbol{x} \cdot \boldsymbol{y}=(U \boldsymbol{x}) \cdot(U \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y} in \boldsymbol{R}^{n}.
$\square \quad(\operatorname{row}(U))^{\perp}=\boldsymbol{R}^{n}$
12. Let S be a subspace of \boldsymbol{R}^{3} and let \boldsymbol{y} be a vector given by
$S=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]\right\}$ and $\boldsymbol{y}=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$.
Find the orthogonal projection projs $_{S} \boldsymbol{y}$ of the vector \boldsymbol{y} onto S.
$\operatorname{proj}_{S} \boldsymbol{y}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$
$\operatorname{proj}_{S} \boldsymbol{y}=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$
$\operatorname{proj}_{S} \boldsymbol{y}=\left[\begin{array}{c}5 / 2 \\ 7 / 2 \\ 0\end{array}\right]$
$\operatorname{proj}_{S} \boldsymbol{y}=\left[\begin{array}{c}3 / 2 \\ 5 / 2 \\ -2\end{array}\right]$
$\operatorname{proj}_{S} \boldsymbol{y}=\left[\begin{array}{r}0 \\ 1 \\ -5\end{array}\right]$

Problems 13-20

13. The set of all vectors lying on the line $y=-2 x$ is a subspace of \boldsymbol{R}^{2}.

- TrueFalse

14. If A is an $n \times n$ matrix with $\operatorname{det}(A)=0$, the columns of A are a basis for \boldsymbol{R}^{n}.

- True
- False

15. If A is similar to B, then A^{T} is similar to B^{T}.

- True
- False

16. The matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is orthogonally diagonalizable.

- True
- False

17. Let $S=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$ be a subspace of \boldsymbol{R}^{4}. If $\boldsymbol{v} \cdot \boldsymbol{w}_{1}=0$ and $\boldsymbol{v} \cdot \boldsymbol{w}_{2}=0$, then $S^{\perp}=\operatorname{span}\{\boldsymbol{v}\}$.

- True

False
18. The set $\left\{\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]\right\}$ is an orthogonal set.

- True
- False

19. Let S be a subspace of \boldsymbol{R}^{n}, and suppose that \boldsymbol{v} is in both S and S^{\perp}. Then $\boldsymbol{v}=\mathbf{0}$.

- True
- False

20. If S is a subspace of \boldsymbol{R}^{n} and \boldsymbol{y} is a vector in S, then projs $\boldsymbol{y}=\boldsymbol{y}$.

- True
- False

4.

Question Details
Problem 21 [4646156]

Problem 21

If A and B are 3×3 matrices, with $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=6$, then $\operatorname{det}\left(-2 B^{-1} A^{T}\right)=$ \square
5. Question Details

Problem 22

If A is a 2×2 matrix with eigenvalue 1 and corresponding eigenvector $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and eigenvalue -1 with eigenvector $\boldsymbol{y}=$ $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$, then

$$
A^{101}(4 x+2 \boldsymbol{y})=
$$

6.

Question Details

Problem 23

Find the singular values of the matrix
$\left[\begin{array}{rr}-16 & 0 \\ 0 & 4\end{array}\right]$.
$\sigma_{1}=\square$
$\sigma_{2}=\square$

Problem 24

Let W be the subspace of \boldsymbol{R}^{4} given by
$W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 2\end{array}\right]\right\}$.

Find a basis for W and a basis for W^{\perp}. What are the values of $\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$? Use the green arrows to increase or decrease the number of vectors in each basis if needed.
Basis for $W=\begin{aligned} & \square= \\ & \square \begin{array}{l}\square \\ \square \| \\ \downarrow \|\end{array}\end{aligned}$

$\operatorname{dim} W=$ \qquad
$\operatorname{dim} W^{\perp}=$ \qquad
8.

Problem 25 [4646667]

Problem 25

Find the inverse A^{-1} of the matrix
$A=\left[\begin{array}{rrr}2 & 1 & -3 \\ 1 & 0 & -2 \\ -2 & -1 & 4\end{array}\right]$.

$A^{-1}=$| | \square | \square | \square |
| :--- | :--- | :--- | :--- |
| | \square | \square | \square |
| | \square | \square | \square |

Problem 26

Let S be the subspace
$S=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$.
Use the Gram-Schmidt procedure to find an orthogonal basis for S.
When entering the vectors below, enter any fractions using "/". For example, the fraction $\frac{2}{5}$ would be entered using " $2 / 5$ ".

Problem 27

Orthogonally diagonalize the matrix
$A=\left[\begin{array}{rr}6 & -2 \\ -2 & 9\end{array}\right]$.
In other words, find a diagonal matrix D and an orthogonal matrix Q such that $A=Q D Q^{T}$.

Enter the characteristic polynomial you obtain for the matrix A here. (Enter the coefficients of the polynomial in the blanks provided.)
$p(\lambda)=\square \lambda^{2}+\square \lambda+\square$

Enter the eigenvalues for A in decreasing order (from largest to smallest).
$\lambda_{1}=\square$
$\lambda_{2}=\square$

When entering the matrices below, enter any fractions using "/" and square roots using "sqrt()". For example, the fraction $\frac{2}{\sqrt{3}}$ would be entered using " $2 /$ sqrt(3)".

Enter the Q matrix here.
\square

Enter the D matrix here.
\square
D =

Problem 28

Find a singular value decomposition of the matrix
$A=\left[\begin{array}{cc}2 \sqrt{2} & 2 \sqrt{2} \\ 0 & 0 \\ \sqrt{2} & -\sqrt{2}\end{array}\right]$.

As part of the process of finding an SVD for A you must compute an intermediate matrix B from which to compute the singular values. Enter the matrix B below. Use the green arrows to resize B if necessary.

Enter the characteristic polynomial you obtain for B here. (Enter the coefficients of the polynomial in the blanks provided.)
\square $\lambda^{2}+$

Enter the singular values for A in decreasing order (from largest to smallest).
$\sigma_{1}=$ \square
$\sigma_{2}=$ \square

When entering the matrices below, enter any fractions using "/" and square roots using "sqrt()". For example, the fraction $\frac{2}{\sqrt{3}}$ would be entered using "2/sqrt(3)". Use the green arrows to resize the matrices below if necessary.

Enter the U matrix here.

Enter the Σ matrix here.

$\Downarrow \|$

Enter the V matrix here (not V^{T}).

Assignment Details

Name (AID): Final Exam (16537454)	Feedback Settings
Submissions Allowed: 100	Before due date
Category: Exam	Response
Code:	Save Work
Locked: Yes	After due date
Author: Kempton, Mark (mkempton@mathematics.byu.edu)	Response

Last Saved: Apr 16, 2020 10:21 AM MDT
Permission: Protected
Randomization: Assignment
Which graded: Last

