MATH 334, MIDTERM EXAM I, FALL 2020

Name	BYU ID

- This is a closed-book exam. Calculators are not allowed.
- For problems other than True/False or multiple choice, you must show valid arguments with all necessary steps. Mysterious answers will receive little or no credit.

Problem	Possible points	Earned points
1	5	
$2-10$	18	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
Total	83	

Problem 1. (5 points) Identify the direction field corresponding to each given differential equation.

D	$y^{\prime}=t^{2}$	E	$y^{\prime}=y(1-t)$
C	$y^{\prime}=t y$	A	$y^{\prime}=1-y$

(A)

(c)

(B)

(D)

(E)

Problem 2. (2 points) An autonomous ODE $y^{\prime}=f(y)$ has the following phase line. Suppose $y(2)=-1$. What is $\lim _{t \rightarrow \infty} y(t) ?$

a. -3
b. -2
(c. 0
d. 1
e. 2
f. ∞

Problem 3. (2 points) The ODE $y^{\prime}+y y^{\prime \prime}=0$ is second order.

Problem 4. (2 points) Every solution to the ODE $y^{\prime}=\cos (y)$ is bounded. (That is, there is some number $M>0$ such that $|y(t)| \leq M$ for all t.)

Problem 5. (2 points) If a function $f(t, y)$ and its partial derivative $\frac{\partial f}{\partial y}$ are continuous in the rectangle $(-1,1) \times(0,2)$ then the initial value problem $y^{\prime}=f(t, y), y(0)=1$ has a solution on $(-1,1)$.

True

Problem 6. (2 points) For any functions u and v, if $W[u, v](t)=0$ for all $t \in \mathbb{R}$ then u and v are linearly dependent.

True

Problem 7. (2 points) The function $y=t e^{2 t}$ is a solution of $y^{\prime \prime}-y^{\prime}-2 y=0$.
True
False
Problem 8. (2 points) The interval where the solution to the initial value problem

$$
\left(1-t^{2}\right) y^{\prime}+t y=\ln (t), \quad y(2)=0
$$

is certain to exist is
a. $(-\infty, 0)$
b. $(0,1)$
C. $(1, \infty)$
d. $(0, \infty)$

Problem 9. (2 points) Let $u(t)=t^{2}$ and $v(t)=e^{t}$. Then $W[u, v](1)$ is equal to
a. 0
b. 1
c. $e^{2}-e$
(d. $-e$

Problem 10. (2 points) The functions $y_{1}=e^{2 t} \cos (t)$ and $y_{2}=e^{2 t} \sin (t)$ are solutions of the ODE
a. $y^{\prime \prime}+4 y^{\prime}+5 y=0$
(b) $y^{\prime \prime}-4 y^{\prime}+5 y=0$
c. $y^{\prime \prime}+2 y^{\prime}+y=0$
d. $y^{\prime \prime}+2 y^{\prime}+5 y=0$

Problem 11. (10 points) Consider the autonomous ODE $y^{\prime}=y^{2}\left(1-y^{2}\right)(y+2)$. Determine all the equilibrium solutions. Draw the phase line. Determine if each equilibrium is stable, unstable, or semistable. Sketch a few approximate solutions in the $t y$-plane.

Equilibria: $0,-1,1,-2$

Stable: $-2,1$
unstable: -1
Semistable: 0

Problem 12. (10 points) Solve the initial value problem

$$
\begin{aligned}
& y^{\prime}=\frac{2 x}{y}+\frac{1}{y}, \quad y(0)=-2 \\
y^{\prime}= & \frac{2 x+1}{y} \\
\longrightarrow & y y^{\prime}=2 x+1
\end{aligned}
$$

Integrating lath sides: $\quad \frac{y^{2}}{2}=x^{2}+x+C$
Thus, $y= \pm \sqrt{2\left(x^{2}+x+C\right)}$
For $x=0$, we get $-2= \pm \sqrt{2 C}$.
Thus, the minus sign is chosen and $C=2$.

$$
y=-\sqrt{2\left(x^{2}+x+2\right)}
$$

Problem 13. (10 points) Solve the initial value problem

$$
\begin{align*}
& x\left(y^{\prime}+2\right)=y, \quad y(1)=2 . \\
& y^{\prime}+2=\frac{1}{x} y \\
& y^{\prime}-\frac{1}{x} y=-2 \tag{*}
\end{align*}
$$

Integrating factor:

$$
e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}
$$

Multiply both sids of (x) by $\frac{1}{x}$:

$$
\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=-\frac{2}{x}
$$

Then

$$
\left(\frac{1}{x} y\right)^{\prime}=-\frac{2}{x}
$$

Integrating booth sides:

$$
\begin{aligned}
\frac{1}{x} y & =-2 \ln x+C \\
\leadsto y & =-2 x \ln x+C x
\end{aligned}
$$

Plug $x=1$, we get

$$
2=-2 l(\underbrace{\ln 1}_{0}+c \cdot 1
$$

Thus give $C=2$.

$$
y=-2 x \ln x+2 x
$$

Problem 14. (10 points) Solve the initial value problem

$$
\begin{gathered}
y^{\prime}=y(y-3), \quad y(0)=2 . \\
\frac{y^{\prime}}{y(y-3)}=1 \leadsto \int \frac{d y}{y(y-3)}=x+C
\end{gathered}
$$

Decompose $\frac{1}{y(y-3)}$ as follows (fraction decomposition):

$$
\frac{1}{y(y-3)}=\frac{A}{y}+\frac{B}{y-3}
$$

We get $A=-\frac{1}{3}, B=\frac{1}{3}$.

$$
\begin{aligned}
& \frac{1}{3} \int\left(\frac{1}{y-3}-\frac{1}{y}\right) d y=x+C \\
& \leadsto \frac{1}{3}(\ln |y-3|-\ln |y|)=x+C \\
& \leadsto \quad \frac{1}{3} \ln \left|\frac{y-3}{y}\right|=x+C \\
& \leadsto \quad \ln \left|\frac{y-3}{y}\right|=3 x+3 C \quad \frac{y-3}{y}= \pm e^{3 x+3 C} \\
& \leadsto \frac{y-3}{y}=k e^{3 x}
\end{aligned}
$$

Substituting $x=0$, we get $\frac{2-3}{2}=k$. Thus, $k=-1 / 2$

$$
\begin{aligned}
y-3=k y e^{3 x} & \longrightarrow y\left(1-k e^{3 x}\right)=3 \\
& \longrightarrow y=\frac{3}{1+\frac{1}{2} e^{3 x}}
\end{aligned}
$$

Problem 15. (10 points) Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Determine the limit of $y(t)$ as $t \rightarrow \infty$.
Chamatersitio eq: $\quad r^{2}+4 r+3=0$
Two sorts are $r=-1$ and $r=-3$.
The general sol is $y=c_{1} e^{-t}+c_{2} e^{-3 t}$.
To compute c_{1}, c_{2}, we differentiate y :

$$
y^{\prime}=-c_{1} e^{-t}-3 c_{2} e^{-3 t}
$$

Because $y(0)=1$ and $y^{\prime}(0)=-1$, we have

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=1 \\
-c_{1}-3 c_{2}=-1
\end{array}\right.
$$

From here we get $c_{1}=1$ and $c_{2}=0$.

$$
\begin{aligned}
& y=e^{-t} \\
& \lim _{t \rightarrow \infty} y(t)=0
\end{aligned}
$$

Problem 16. (10 points) A container initially has 500 gal of mixture of salt and water with salt concentration 0.1 lbs per gal. People purify the container by pumping fresh water into the container at a volume rate of $3 \mathrm{gal} / \mathrm{min}$, and at the same time pumping out from the container at the rate of 2 gal/min. Assume that the mixture is well-stirred at all time. How much time will elapse before the concentration of the salt in the container readily tor gif of the original concentration?
$y=y(t) \ldots$ amount of salt at time t.
$V=V(t)$... volume of the mixture at time t.
$c=c(t)=\frac{y(t)}{V(t)}$...concentration of salt at time t.
we have

$$
\frac{d V}{d t}=3-2=1
$$

Thus $V(t)=t+C$. with $V(0)=500$, we get $C=500$.
Then $\quad V(t)=t+500$.
lie have

$$
\frac{d y}{d t}=0 \times 3-\frac{y}{V} \times 2=-\frac{2 y}{t+500}
$$

Thus, $\quad \frac{d y}{y}=-\frac{2}{t+500} d t$
Integrate both sites:
Emponentate both sites:

$$
\ln y=-2 \ln (t+500)+C
$$

$$
\begin{equation*}
y=\frac{k}{(t+500)^{2}} \tag{*}
\end{equation*}
$$

Because $c(0)=0.1$, we have $y(0)=c(0) v(0)=0.1 \times 500=50$. Plug $t=0$ into (k), we get: $50=\frac{k}{500^{2}}$. Thus, $k=625 \times 10^{5}$

$$
\begin{aligned}
& y(t)=\frac{625 \times 10^{5}}{(t+508)^{2}} \\
& c(t)=\frac{y(t)}{v(t)}=\frac{625 \times 10^{5}}{(t+500)^{3}} .
\end{aligned}
$$

For $c(t)=\frac{1}{8} c(0)$, we need

$$
\frac{625 \times 10^{5}}{(t+5788)^{3}}=\frac{1}{8} 0.1
$$

Thus,

$$
\begin{aligned}
(t+588)^{3}=\frac{625 \times 10^{5}}{0.1 / 8} & =\frac{8 \times 625 \times 10^{5}}{0.1} \\
& =8 \times 625 \times 10^{6} \\
& =2^{3} \times 5^{3} \times 100^{3}
\end{aligned}
$$

Then $\quad t+500=2 \times 5 \times 100=1000$.

We get $t=500$ (minutes)

