Name	BYU ID

- This is a closed-book exam. Calculators are not allowed. You have 4 hours to work on the exam.
- For Problems 15-18, you must show valid arguments with all necessary steps. Mysterious answers will receive little or no credit.

Problem	Possible points	Earned points
$1-13$	26	
14	5	
15	13	
16	13	
17	13	
18	13	
Total	83	

$f(t)=\mathcal{L}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}, n a positive integer	$\frac{n!}{s^{n+1}}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$t^{n} e^{a t}, n$ a positive integer	$\frac{n!}{(s-a)^{n+1}}$
$u_{c}(t)=\left\{\begin{array}{ll\|}\hline 0 \text { if } t<c, \\ 1 & \text { if } \quad t \geq c\end{array}\right.$	$\frac{e^{-c s}}{s}$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
$e^{c t} f(t)$	$F(s-c)$
$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$
$(-t)^{n} f(t)$	$F^{(n)}(s)$

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
\ln (1+x) & =\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k} \\
\sin x & =\sum_{k=0}^{\infty}(-1)^{k+1} \frac{x^{2 k+1}}{(2 k+1)!} \\
\cos x & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!} \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}
\end{aligned}
$$

Problem 1. (2 points) I acknowledge that I will not use notes, books, calculators, internet sources, or any assistance from other individuals as I complete this exam. I will complete the exam in one sitting. I will not discuss the exam with any other class members until after the exam period is completed.
©. True
b. False

Problem 2. (2 points) The general solution to the differential equation $y^{\prime \prime}-5 y^{\prime}+4 y=e^{t}$ is of the form
a. $c_{1} e^{-t}+c_{2} e^{4 t}+A e^{t}$
b. $c_{1} e^{t}+c_{2} e^{4 t}+A e^{t}$
(c. $c_{1} e^{t}+c_{2} e^{4 t}+A t e^{t}$
d. $\quad c_{1} e^{-t}+c_{2} e^{4 t}+A t e^{t}$

Problem 3. (2 points) Suppose that a linear, homogeneous ODE with constant coefficients has the characteristic polynomial $\left(r^{2}+1\right)(r+2)^{2}$. What is the order of the ODE?
a. 2
b. 3
(c. 4
d. 5

Problem 4. (2 points) What is the general solution to the ODE in the previous problem?
a. $c_{1} e^{-2 t}+c_{2} \cos t+c_{3} \sin t$
(D) $c_{1} e^{-2 t}+c_{2} t e^{-2 t}+c_{3} \cos t+c_{4} \sin t$
c. $c_{1} e^{-2 t}+c_{2} e^{t} \cos t+c_{3} e^{t} \sin t$
d. $c_{1} e^{-2 t}+c_{2} t e^{-2 t}+c_{3} e^{t} \cos t+c_{4} e^{t} \sin t$

Problem 5. (2 points) The Laplace transform of the function $5 e^{-2 t}-3 \sin (4 t)$ is equal to
(a.) $\frac{5}{s+2}-\frac{12}{s^{2}+16}$
b. $\frac{5}{s+2}-\frac{3}{s^{2}+16}$
c. $\frac{5}{s-2}-\frac{3}{s^{2}+16}$
d. $\frac{5}{s-2}-\frac{12}{s^{2}+16}$

Problem 6. (2 points) The inverse Laplace transform of the function $\frac{3}{s^{2}+4}$ is equal to
a. $\sin (2 t)$
b. $\sin \left(\frac{3 t}{2}\right)$
c. $\frac{2}{3} \sin (2 t)$
d. $\frac{3}{2} \sin (2 t)$

Problem 7. (2 points) The ODE

$$
\left(x^{2}-1\right) y^{\prime \prime \prime}+(\ln x) y^{\prime \prime}+e^{-x} y=1
$$

is sure to have a solution on the interval
a. $(-1,1)$
b. $(-1,0)$
(c.) $(0,1)$
d. $[0,1]$

Problem 8. (2 points) The Wronskian of the functions $e^{t}, 1, \cos t$ (in that order) is equal to a. 0
b. $e^{t}(\sin t+\cos t)$
c. $e^{t}(\sin t-\cos t)$
(d) $e^{t}(\cos t-\sin t)$

Problem 9. (2 points) The initial value problem

$$
\left\{\begin{array}{cc}
(1-x) y^{\prime \prime}+y & =x \\
y(0) & =1 \\
y^{\prime}(0) & =1
\end{array}\right.
$$

has a power series solution $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ The first four coefficients $a_{0}, a_{1}, a_{2}, a_{3}$ are
(a) $1,1,-1 / 2,-1 / 6$
b. $1,-1,-1,1$
c. $1,1,-1 / 2,1 / 3$
d. $1,1,1 / 2,1 / 3$

Problem 10. (2 points) The radius of convergence of the power series

$$
\sum_{k=1}^{\infty} \frac{(x-2)^{k}}{k^{2}+1}
$$

is equal to
a. 0
(b) 1
c. 2
d. 3

Problem 11. (2 points) The function $\frac{5}{2-3 x^{2}}$ can be written as a power series centered at 0 . Which of the following is the correct power series?
(a. $\frac{5}{2} \sum_{k=0}^{\infty}\left(\frac{3}{2}\right)^{k} x^{2 k}$
b. $\frac{5}{2} \sum_{k=1}^{\infty}\left(\frac{3}{2}\right)^{k} x^{2 k}$
c. $\frac{3}{2} \sum_{k=0}^{\infty}\left(\frac{5}{2}\right)^{k} x^{2 k}$
d. $\sum_{k=0}^{\infty}\left(\frac{3}{2}\right)^{k} x^{2 k}$

Problem 12. (2 points) A mass m is hanged on a spring with spring coefficient $k>0$. Suppose the damping coefficient is $\gamma>0$. Denote by $y(t)$ the displacement of the mass from its equilibrium position, measured positive in the downward direction, at time t. Then y satisfies the equation
a. $m y^{\prime \prime}-\gamma y^{\prime}+k y=m g$
(b.) $m y^{\prime \prime}+\gamma y^{\prime}+k y=0$
c. $m y^{\prime \prime}+\gamma y^{\prime}-k y=m g$
d. $m y^{\prime \prime}+\gamma y^{\prime}-k y=0$

Problem 13. (2 points) In case $m=1, \gamma=3, k=2$, the motion described in the previous problem is
(a) Overdamped
b. Underdamped
c. Critically damped
d. Undamped

Problem 14. (5 points) Choose ALL the improper integrals that converge.
a. $\int_{1}^{\infty} \frac{t+1}{t^{2}+1} d t$
(b.) $\int_{1}^{\infty} e^{-t^{2}} d t$
c. $\int_{1}^{\infty} \frac{\ln t}{t} d t$
(d.) $\int_{0}^{1} \frac{\sin t}{\sqrt{t}} d t$
(e.) $\int_{0}^{7} \frac{1}{\sqrt{7-t}} d t$

Problem 15. (13 points) Solve the initial value problem

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}=3+4 \sin (2 t), y(0)=1, y^{\prime}(0)=1 \\
& y=y_{c}+y_{\boldsymbol{p}}
\end{aligned}
$$

Solve the hormozereoms ODE for y_{c} : the characteristic eq. is

$$
r^{2}+2 r=0
$$

which gives $r=0$ and $r=-2$. Thus,

$$
y_{c}=c_{1} e^{0 t}+c_{2} e^{-2 t}=c_{1}+c_{2} e^{-2 t}
$$

To find a particular solution, we split the equation into two to find a particular solution of each:

$$
\left.\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}=3 \\
y^{\prime \prime}+2 y^{\prime}=4 \sin 2 t \\
(2) \longrightarrow y_{p 1} \\
y_{p 2}
\end{array}\right\} \begin{aligned}
& y_{p}=y_{p 1}+y_{p 2}
\end{aligned}
$$

we look for a particular sol. to (1) of the form

$$
y=A t
$$

Substitute this function into (1): $\quad 2 A=3 \longrightarrow A=\frac{3}{2}$.
Thus, $\quad y_{p 1}=\frac{3}{2} t$
We look for a particular sol. t (2) of the form

$$
y=A \cos 2 t+B \sin 2 t
$$

$$
\begin{gathered}
y^{\prime}=-2 A \sin 2 t+2 B \cos 2 t \\
y^{\prime \prime}=-4 A \cos 2 t-4 B \sin 2 t \\
y^{\prime \prime}+2 y^{\prime}= \\
(-4 A+4 B) \cos 2 t+(-4 B-4 A) \sin 2 t
\end{gathered}
$$

We want

$$
\left\{\begin{array}{l}
-4 A+4 B=0 \\
-4 B-4 A=4
\end{array} \sim \operatorname{get} A=B=-\frac{1}{2}\right.
$$

Thess, $y_{p_{2}}=-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t$
we gat

$$
y_{p}=y_{m}+y_{m}=\frac{3}{2} t-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t
$$

The general sol to the UTBE is

$$
\begin{gathered}
y=y_{c}+y_{p}=c_{1}+c_{2} e^{-2 t}+\frac{3}{2} t-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t \\
y^{\prime}=-2 c_{2} e^{-2 t}+\frac{3}{2}+\sin 2 t-\cos 2 t \\
y(0)=1 \leadsto c_{1}+c_{2}-\frac{1}{2}=1 \leadsto c_{1}+c_{2}=\frac{3}{2} \\
y^{\prime}(0)=1 \leadsto-2 c_{2}+\frac{3}{2}-1=1 \leadsto c_{2}=-\frac{1}{4} \\
\leadsto c_{1}=\frac{3}{2}-c_{2}=\frac{3}{2}+\frac{1}{c_{1}}=\frac{7}{4}
\end{gathered}
$$

Theregre, $y=\frac{7}{4}-\frac{1}{4} e^{-2 t}+\frac{3}{2} t-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t$

Problem 16. (13 points) Find the general solution to the ODE

$$
y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}
$$

Characteristic eq: $r^{2}+4 r+4=0$
Double root $r=-2$.
The complementary is $y_{c}=c_{1} \underbrace{e^{-2 t}}_{y_{1}}+c_{2} \underbrace{t e^{-2 t}}_{y_{2}}$
To find a particular solution, we use the method of variation of parameters:

$$
y_{p}=c_{1}(t) y_{1}+c_{2}(t) y_{2}
$$

The system to solve for c_{1} and c_{2} is

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1}^{\prime} y_{1}+c_{2}^{\prime} y_{2}=0 \\
c_{1}^{\prime} y_{1}^{\prime} t c_{2}^{\prime} y_{2}^{\prime}=t^{-2} e^{-2 t}
\end{array}\right. \\
& c_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \\
t^{-2} e^{-l t} & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}=\frac{-t^{-2} e^{-2 t} y_{2}}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|} \\
& c_{2}^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & t^{-2} e^{-2 t}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}=\frac{y_{1} t^{-2} e^{-2 t}}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & z_{2}^{\prime}
\end{array}\right|}
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| & =\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}(1-2 t)
\end{array}\right|=e^{-2 t} e^{-2 t}\left|\begin{array}{cc}
1 & t \\
-2 & 1-2 t
\end{array}\right| \\
& =e^{-4 t}(1-2 t+2 t)=e^{-4 t}
\end{aligned}
$$

Thus, $\quad c_{1}^{\prime}=\frac{-t^{-2} e^{-2 t} y_{2}}{e^{-4 t}}=\frac{-t^{-2} e^{-2 t} t e^{-2 t}}{e^{-4 t}}=-\frac{1}{t}$

$$
c_{2}^{\prime}=\frac{\bar{t}^{-2} e^{-2 t} y_{1}}{e^{-4 t}}=\frac{t^{-2} e^{-2 t} e^{-2 t}}{e^{-4 t}}=\frac{1}{t^{2}}
$$

we get

$$
c_{1}=-\ln t, \quad c_{2}=-\frac{1}{t}
$$

Then $y_{p}=a_{1} y_{1} t c_{2} y_{2}=-(\ln t) e^{-2 t}-e^{-2 t}$
Theregre, the general aol bo the ODE is

$$
y=y_{c}+y_{\infty}=a^{-2 t}+\varepsilon t e^{-2 t}-(\ln t) e^{-2 t}-e^{-2 t}
$$

Problem 17. (13 points) Solve the initial value problem

$$
y^{\prime \prime \prime}+y^{\prime}=1, \quad y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=2
$$

Charactenstic eq. $\underbrace{r^{3}+r}_{r\left(r^{2}+1\right)}=0$
It has three roots $r=0, r= \pm i$.
The complementary sol is $y_{c}=c_{1} e^{0 t}+c_{2} \cos t t c_{3} \sin t$

$$
=c_{1}+c_{2} \cos t+c_{3} \sin t
$$

We guess a particular sol of the form

$$
y_{p}=A t
$$

Plug into the eq: $A=1$
Therefore, the ODE has a general sol

$$
y=a_{1}+\varepsilon \cos t+c_{3} \sin t+t
$$

Apply initial conditions of find $a, \varepsilon_{1}, c_{3}$:

$$
\begin{aligned}
& y(0)=0 \leadsto c_{1}+c_{2}=0 \\
& y^{\prime}=-c_{2} \sin t+c_{3} \cos t+1 \\
& y^{\prime}(0)=1 \leadsto c_{3}+1=1 \leadsto c_{3}=0 \\
& y^{\prime \prime}=-c_{2} \cos t-c_{3} \sin t
\end{aligned}
$$

$$
y^{\prime \prime}(0)=2 \leadsto-c_{2}=2 \leadsto c_{2}=-2
$$

Then $c_{1}=-c_{2}=2$.
Therefore,

$$
y=2-2 \cos t+t
$$

Problem 18. (13 points) Solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=f(t), \quad y(0)=y^{\prime}(0)=0, \\
f(t)=\left\{\begin{array}{cc}
0 \text { if } & 0<t \leq \boldsymbol{k}, \\
t^{2}-1 & t>\boldsymbol{i f}
\end{array}\right.
\end{gathered}
$$

Use Laplace transform:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}\right\}=Y \\
& \mathcal{L}\left\{y^{\prime}\right\}=s Y-y(s)=s Y \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} Y-s y(0)-y^{\prime}(t)=s^{2} y \\
& \mathcal{f}(t)=u_{1}(t)\left(t^{2}-1\right) \\
& \mathcal{L}\{f\}=\mathcal{L}\{n_{1}(t) \underbrace{\left(t^{2}-1\right)}_{g^{\prime}(t-1)}\}=e^{-s} \mathcal{L}\{g\}(s)
\end{aligned}
$$

Rut $x=t-1$. Thin $g(x)=t^{2}-1=(x+1)^{2}-1=x^{2}+2 x$
Thin $\mathcal{L}\{g\}(s)=\mathcal{L}\left\{x^{2}\right\}+2 \mathcal{L}\{x\}=\frac{2}{s^{3}}+\frac{2}{s^{2}}=\frac{2+2 s}{s^{3}}$
Thus,

$$
\begin{array}{ll}
& \left(s^{2}+3 s+2\right) y=e^{-s} \frac{2+2 s}{s^{3}} \\
\longrightarrow & y=\frac{e^{-s}(2+2 s)}{s^{3}\left(s^{2}+3 s+2\right)}=\frac{e^{-s} 2(1+s)}{s^{3}(s+1)(s+2)}=e^{-s} \frac{2}{s^{3}(s+2)}
\end{array}
$$

Partial decomporition:

$$
\begin{equation*}
\frac{2}{s^{3}(s+2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}}+\frac{D}{s+2} \tag{*}
\end{equation*}
$$

Mulliphy by $s+2$:

$$
\frac{2}{s^{3}}=\left(\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}}\right)(s+2)+D
$$

Plug $s=-2: \quad \frac{2}{(-2)^{3}}=D \longrightarrow D=-\frac{1}{4}$.
Multiply (k) by s^{3} :

$$
\frac{2}{s+2}=A s^{2}+B s+C+\frac{D s^{3}}{s+2}(* *)
$$

Plug $s=0: \quad C=1$

$$
\text { Ilug } s=2: \underbrace{\frac{2}{4}}_{1 / 2}=4 A+2 B+\underbrace{C}_{1}+\underbrace{\frac{D(8)}{4}}_{-1 / 2}
$$

Then $\quad 4 A+2 B=0 \leadsto 2 A+B=0$.
Plong $s=1$ in $(x *)$:

$$
\frac{2}{3}=A+B+\overbrace{1}^{C}+\underbrace{\frac{D}{3}}_{-1 / 12} \leadsto A+B=-\frac{1}{4}) \quad B=-\frac{1}{2}
$$

Thus, $\frac{2}{s^{3}(s+2)}=\frac{1 / 4}{s}+\frac{-1 / 2}{s^{2}}+\frac{1}{s^{3}}+\frac{-1 / 4}{s+2}$

Then

$$
y=e^{-s} \frac{2}{s^{3}(s+2)}=\frac{1}{4} \frac{e^{-s}}{s}-\frac{1}{2} \frac{e^{-s}}{s^{2}}+\frac{e^{-s}}{s^{3}}-\frac{1}{4} \frac{e^{-s}}{s+2}
$$

We get

$$
\begin{aligned}
y=\mathcal{L}^{-1}\{y\} & =\frac{1}{4} \mathcal{L}\left\{\frac{e^{-s}}{s}\right\}-\frac{1}{2} \mathcal{L}\left\{\frac{e^{-s}}{s^{2}}\right\}+\mathcal{L}\left\{\frac{e^{-s}}{s^{3}}\right\}-\frac{1}{4} \mathcal{L}\left\{\frac{e^{-s}}{s+2}\right\} \\
& =\frac{1}{4} u_{1}(t)-\frac{1}{2} u_{1}(t)(t-1)+u_{1}(t) \frac{(t-1)^{2}}{2}-\frac{1}{4} u_{1}(t) e^{-2(t-1)}
\end{aligned}
$$

