MATH 334, MIDTERM EXAM II, FALL 2020

Name	BYU ID

- This is a closed-book exam. Calculators are not allowed. You have 4 hours to work on the exam.
- For Problems 15-18, you must show valid arguments with all necessary steps. Mysterious answers will receive little or no credit.

Problem	Possible points	Earned points
1 - 13	26	
14	5	
15	13	
16	13	
17	13	
18	13	
Total	83	

$f(t) = \mathcal{L}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
t^n , <i>n</i> a positive integer	$rac{n!}{s^{n+1}}$
$\sin(at)$	$\frac{a}{s^2+a^2}$
$\cos(at)$	$\frac{s}{s^2+a^2}$
$\sinh(at)$	$\frac{a}{s^2-a^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$t^n e^{at}$, <i>n</i> a positive integer	$\frac{n!}{(s-a)^{n+1}}$
$u_{c}(t) = \begin{cases} 0 & \text{if } t < c, \end{cases}$	$\frac{e^{-cs}}{s}$
$\left(\begin{array}{c} u_c(t) = \\ 1 \text{if} t \ge c \end{array}\right)$	
$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$e^{ct}f(t)$	F(s-c)
f(ct)	$rac{1}{c}F\left(rac{s}{c} ight)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$(-t)^n f(t)$	$F^{(n)}(s)$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k}}{k}$$
$$\sin x = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{(2k+1)!}$$
$$\cos x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!}$$
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k}$$

Problem 1. (2 points) I acknowledge that I will not use notes, books, calculators, internet sources, or any assistance from other individuals as I complete this exam. I will complete the exam in one sitting. I will not discuss the exam with any other class members until after the exam period is completed.

👌. True

b. False

Problem 2. (2 points) The general solution to the differential equation $y'' - 5y' + 4y = e^t$ is of the form

- $c_1 e^{-t} + c_2 e^{4t} + A e^t$ a.
- b. $c_1 e^t + c_2 e^{4t} + A e^t$

(c) $c_1 e^t + c_2 e^{4t} + At e^t$

d. $c_1 e^{-t} + c_2 e^{4t} + At e^t$

Problem 3. (2 points) Suppose that a linear, homogeneous ODE with constant coefficients has the characteristic polynomial $(r^2 + 1)(r + 2)^2$. What is the order of the ODE?

- a. 2 b. 3 **c**. 4 d. 5

Problem 4. (2 points) What is the general solution to the ODE in the previous problem?

a. $c_1 e^{-2t} + c_2 \cos t + c_3 \sin t$ (b) $c_1 e^{-2t} + c_2 t e^{-2t} + c_3 \cos t + c_4 \sin t$ c. $c_1 e^{-2t} + c_2 e^t \cos t + c_3 e^t \sin t$ d. $c_1 e^{-2t} + c_2 t e^{-2t} + c_3 e^t \cos t + c_4 e^t \sin t$

Problem 5. (2 points) The Laplace transform of the function $5e^{-2t} - 3\sin(4t)$ is equal to

(a) $\frac{5}{s+2} - \frac{12}{s^2+16}$ b. $\frac{5}{s+2} - \frac{3}{s^2+16}$ c. $\frac{5}{s-2} - \frac{3}{s^2+16}$ d. $\frac{5}{s-2} - \frac{12}{s^2+16}$

Problem 6. (2 points) The inverse Laplace transform of the function $\frac{3}{s^2+4}$ is equal to a. $\sin(2t)$

- b. $\sin\left(\frac{3t}{2}\right)$
- c. $\frac{2}{3}\sin(2t)$
- (d) $\frac{3}{2}\sin(2t)$

Problem 7. (2 points) The ODE

$$(x^2 - 1)y''' + (\ln x)y'' + e^{-x}y = 1$$

is sure to have a solution on the interval

- a. (-1, 1)
- b. (-1,0)
- **C**. (0,1)
- d. [0, 1]

Problem 8. (2 points) The Wronskian of the functions e^t , 1, $\cos t$ (in that order) is equal to a. 0

b. $e^t(\sin t + \cos t)$

c. $e^t(\sin t - \cos t)$

d) $e^t(\cos t - \sin t)$

Problem 9. (2 points) The initial value problem

$$\begin{cases} (1-x)y'' + y = x \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

has a power series solution $y = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ The first four coefficients a_0, a_1, a_2, a_3 are

- (a) 1, 1, -1/2, -1/6
- b. 1, -1, -1, 1
- c. 1, 1, -1/2, 1/3
- d. 1, 1, 1/2, 1/3

Problem 10. (2 points) The radius of convergence of the power series

$$\sum_{k=1}^{\infty} \frac{(x-2)^k}{k^2+1}$$

is equal to

a. 0 b 1 c. 2

d. 3

Problem 11. (2 points) The function $\frac{5}{2-3x^2}$ can be written as a power series centered at 0. Which of the following is the correct power series?

(a) $\frac{5}{2} \sum_{k=0}^{\infty} \left(\frac{3}{2}\right)^k x^{2k}$ b. $\frac{5}{2} \sum_{k=1}^{\infty} \left(\frac{3}{2}\right)^k x^{2k}$ c. $\frac{3}{2} \sum_{k=0}^{\infty} \left(\frac{5}{2}\right)^k x^{2k}$

d.
$$\sum_{k=0}^{\infty} \left(\frac{3}{2}\right)^k x^{2k}$$

Problem 12. (2 points) A mass m is hanged on a spring with spring coefficient k > 0. Suppose the damping coefficient is $\gamma > 0$. Denote by y(t) the displacement of the mass from its equilibrium position, measured positive in the downward direction, at time t. Then y satisfies the equation a. $my'' - \gamma y' + ky = mg$

(b)
$$my'' + \gamma y' + ky = 0$$

c.
$$my'' + \gamma y' - ky = mg$$

d. $my'' + \gamma y' - ky = 0$

Problem 13. (2 points) In case $m = 1, \gamma = 3, k = 2$, the motion described in the previous problem is

- (a) Overdamped
- b. Underdamped
- c. Critically damped
- d. Undamped

Problem 14. (5 points) Choose ALL the improper integrals that converge.

a.
$$\int_1^\infty \frac{t+1}{t^2+1} dt$$

b.
$$\int_1^\infty e^{-t^2} dt$$

- c. $\int_1^\infty \frac{\ln t}{t} dt$
- $(d.) \int_0^1 \frac{\sin t}{\sqrt{t}} dt$
- (e.) $\int_0^7 \frac{1}{\sqrt{7-t}} dt$

Problem 15. (13 points) Solve the initial value problem

$$y'' + 2y' = 3 + 4\sin(2t), y(0) = 1, y'(0) = 1$$

$$y' = y_{c} + y_{t}$$
Solve the homogeneous ODE for y_{c} : the characteristic eq. is
$$y_{c}^{2} + 2r = 0$$
which gives $r = 0$ and $r = -2$. Thus
$$y_{c} = c_{1}e^{at} + q_{c}e^{-2t} = q + c_{c}e^{-2t}.$$
To find a particular solution, we split the equation rate two to find
a particular solution of each:
$$y'' + 2y' = 3 \quad (1) \longrightarrow y_{t}$$

$$y'' + 2y' = 3 \quad (1) \longrightarrow y_{t}$$

$$y'' + 2y' = 4 \text{ sindt} \quad (2) \longrightarrow y_{t}$$
We look for a particular solution (ab (1)) of the form
$$y = At$$
Substitut this function (ab (1)): $2A = 3 \longrightarrow A = \frac{3}{2}.$
Thus,
$$y'' = \frac{3}{2}t$$
We look for a particular solution (al. 6 (2) of the form
$$y = A \cos 2t + i\beta \sin 2t$$

$$y' = -2A \sin 2t + 2B \sin 2t$$

$$y'' = -4A \cos 2t - 4B \sin 2t$$

$$y'' + ky' = (-4A + 4B) \sin 2t + (-4B - 4A) \cos 2t$$

We want

$$\begin{cases} -4A + 4B = D \\ -4B - 4A = 4 \end{cases}$$

Thus, $y_{12} = -\frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$
We get $y_{12} = -\frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$
The general where $h = 0$ the 0 the 0 the 0

$$y = y_{1} + y_{1} = -\frac{1}{2} t - \frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$$

$$y = y_{1} + y_{1} = -\frac{1}{2} t - \frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$$

$$y = y_{1} + y_{1} = -\frac{1}{2} t - \frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$$

$$y = y_{2} + y_{1} = -\frac{1}{2} t + \frac{3}{2} t - \frac{1}{2} \cos 2t - \frac{1}{2} \sin 2t$$

$$y' = -2 \sin 2t + \frac{3}{2} t + \sin 2t - \cos 2t$$

$$y(\omega) = 1 \implies 4 t \le -\frac{1}{2} = 1 \implies 6 t \le -\frac{3}{4}$$

$$y(\omega) = 1 \implies -26 + \frac{3}{2} - 1 = 1 \implies 6 = -\frac{1}{4}$$

$$y(\omega) = 1 \implies -26 + \frac{3}{2} - 1 = 1 \implies 6 = -\frac{1}{4}$$

Therefore, $y = \frac{7}{4} - \frac{1}{4} e^{-\frac{1}{4}} + \frac{3}{2} t - \frac{1}{2} \cos 2t - \frac{1}{2} + \frac{1}{4} = \frac{7}{4}$

Problem 16. (13 points) Find the general solution to the ODE

$$y'' + 4y' + 4y - t^{-2}e^{-yt}.$$
(hardwrith eq : $r^{t} + 4r + 4 = 0$
Rouble root $r = -2$
The complementary is $y_{c} = q \cdot \frac{e^{-tc}}{y_{1}} + c \cdot \frac{te^{-tc}}{y_{2}}$
To find a perbudier relation, we use the method of veriation of
parameters:
 $y_{p} = c_{1}(t) \cdot y_{1} + c_{2}(t) \cdot y_{2}$
The system is colve for c_{1} and c_{2} is
 $\begin{cases} c_{1}'y_{1} + c_{2}'y_{2} = D \\ c_{1}'y_{1}' + c_{2}'y_{2} = D \\ c_{1}'y_{1}' + c_{2}'y_{2} = 0 \end{cases}$
 $\begin{cases} c_{1}'y_{1} + c_{2}'y_{2} = D \\ c_{1}'y_{1}' + c_{2}'y_{2} = 0 \end{cases}$
 $\begin{cases} c_{1}'y_{1} + c_{2}'y_{2} = D \\ c_{1}'y_{1}' + c_{2}'y_{1}' = t^{-2}e^{2t} \\ y_{1}' - y_{2}' \end{bmatrix}$
 $c_{1}' = \frac{\left| \begin{array}{c} 0 \\ y_{1}' - y_{2}' \\ y_{1}' - y_{2}' \end{array} \right|}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|} = \frac{-t^{-2}e^{-2t}}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|} \\ c_{1}' = \frac{\left| \begin{array}{c} y_{1} & 0 \\ y_{1}' - t^{2}e^{2t} \\ y_{1}' - y_{2}' \end{array} \right|}{\left| \begin{array}{c} y_{1} & 0 \\ y_{1}' - t^{2}e^{2t} \\ y_{1}' - y_{2}' \end{array} \right|} = \frac{y_{1}t^{2}e^{-2t}}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|} \\ c_{1}' = \frac{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \\ y_{1}' - y_{2}' \end{array} \right|}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|} = \frac{y_{1}t^{2}e^{-2t}}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|} \\ c_{2}' = \frac{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \\ y_{1}' - y_{2}' \end{array} \right|}{\left| \begin{array}{c} y_{1} & y_{2} \\ y_{1}' - y_{2}' \end{array} \right|}$

$$\begin{vmatrix} g_{1} & g_{1} \\ g_{1}^{2} & g_{2}^{2} \end{vmatrix} = \begin{vmatrix} e^{2t} & te^{-tt} \\ -2e^{2t} & e^{-tt} - 2te^{-tt} \end{vmatrix}$$
$$= \begin{vmatrix} e^{2t} & te^{-2t} \\ -2e^{-tt} & e^{-tt}(1-2t) \end{vmatrix} = e^{-2t} e^{-2t} \begin{vmatrix} 1 & t \\ -2 & 1-2t \end{vmatrix}$$
$$= e^{-4t} (1-2t+2t) = e^{-4t}$$
Thus, $G' = -\frac{t^{2} e^{-2t} g_{1}}{e^{-4t}} = -\frac{t^{2} e^{-4t} te^{-2t}}{e^{-4t}} = -\frac{1}{t}$
$$G' = -\frac{t^{2} e^{-2t} g_{1}}{e^{-4t}} = \frac{t^{2} e^{-2t} e^{-2t}}{e^{-4t}} = -\frac{1}{t^{2}}$$
We get $G = -\ln t$, $G_{2} = -\frac{1}{t}$
Thus, $g_{1} = -\ln t$, $G_{2} = -\frac{1}{t}$

Problem 17. (13 points) Solve the initial value problem

$$y'' + y' = 1, \ y(0) = 0, y'(0) = 1, y''(0) = 2.$$

Characteristic eq. $r' + r = 0$
 $r(r'+1)$
It has three roots $r = 0$, $r = \pm c$.
The complementing col as $y_{z} = c_{1}e^{ot} \pm c_{1}at \pm c_{2}sat \pm c_{3}sat$
 $= q \pm c_{1}at \pm c_{3}sat$
We gaves a perturber or $l = of \pm le$ form
 $y_{p} = At$
Iling into the eq: $A = 1$
Therefore, the ODE has a general ford
 $y = q \pm c_{1}at \pm c_{3}sat \pm t$
Apply initial conditions to find $q + c_{1}, q$;
 $y(c) = 0 \longrightarrow q \pm c_{2} = 0$
 $y' = -c_{2}sat \pm c_{3}at \pm 1$
 $g'(c) = 1 \longrightarrow c_{3} \pm 1 = 1 \longrightarrow c_{3} = 0$
 $y''' = -c_{2}c_{3}t + c_{3}at \pm 1$

 $y''(0) = 2 \longrightarrow -c_2 = 2 \longrightarrow c_2 = -2$ Then G = -G = 2. Therefore, $g = 2 - 2 \cot t + t$

Problem 18. (13 points) Solve the initial value problem

$$y'' + 3y' + 2y = f(t), \quad y(0) = y'(0) = 0,$$

$$f(t) = \begin{cases} t^{0} \text{ if } 0 < t \leq b, \\ t^{-1} \text{ if } t > b \end{cases}$$
Use Laplete transform:

$$\int \{g\} = \gamma$$

$$\int \{g'\} = s / -g(b) = s / \gamma$$

$$\int \{g'\} = s^{2} / -sg(c) - g'(c) = s^{2} / \gamma$$

$$\int (t) = a_{1}(t) (t^{1} - 1)$$

$$\int \{g\} = \int \{a_{1}(t) (t^{1} - 1)\} = e^{-s} \int \{g\} d(t)$$

$$\int (t^{1} - 1) = t^{2} - 1 = (n + 1)^{2} - 1 = n^{2} + 2x$$
Then $\int \{g\} (s) = \int \{n^{1}\} + 2\int \{n^{2}\} = \frac{2}{s^{3}} + \frac{9}{s^{2}} = \frac{2 + 2s}{s^{3}}$
Thus,

$$(t^{1} + 3t + 2) / = t^{-s} \frac{2 + 2s}{s^{3}}$$

$$\longrightarrow \quad \chi = \frac{e^{-s} (2 + 2s)}{s^{3} (s^{1} + s + t^{2})} = \frac{e^{-s} 2(1 + s)}{s^{3} (s^{1} + s + t^{2})} = t^{-s} \frac{2}{s^{3} (s^{1} - s^{2})}$$

Partial decomposition! $\frac{2}{s^{3}(s+2)} = \frac{A}{s} + \frac{B}{s^{2}} + \frac{C}{s^{3}} + \frac{D}{s+2}$ (*) Multiply by st2 : $\frac{2}{c^3} = \left(\frac{A}{S} + \frac{B}{c^2} + \frac{C}{c^3}\right)(s+2) + D$ $\frac{2}{(-2)^3} = D \longrightarrow D = -\frac{1}{4}.$ Plug 5 = - 2: pulliply (x) by s3 : $\frac{2}{s+2} = As^{2} + Bs + C + \frac{Ds^{2}}{s+2} (**)$ Plug 5=0 : C=1 $\frac{1}{4} = 4A + 2B + C + \frac{V(8)}{4} + \frac{1}{4} + \frac{1}{4}$ Y2_ $\frac{2}{3} = A + B + C + \frac{P}{3} \longrightarrow A + B = -\frac{1}{4} \xrightarrow{A = \frac{1}{4}} B = -\frac{1}{2}$ Then $(4A+2B=0 \longrightarrow 2A+B=0.$ Play s= (in (**): $\overline{flus}_{3}, \frac{2}{\frac{5^{2}(s+1)}{s}} = \frac{\sqrt{4}}{s} + \frac{-\sqrt{2}}{s^{2}} + \frac{1}{s^{3}} + \frac{-1/4}{s+2}$

Then

$$\chi = e^{-s} \frac{2}{s^3(s+2)} = \frac{1}{4} \frac{e^{-s}}{s} - \frac{1}{2} \frac{e^{-s}}{s^2} + \frac{e^{-s}}{s^3} - \frac{1}{4} \frac{e^{-s}}{s+2}$$

We get

 $y = \mathcal{L}^{T}[Y] = \frac{1}{4} \mathcal{L} \left\{ \frac{e^{-s}}{s} \right\} - \frac{1}{2} \mathcal{L} \left\{ \frac{e^{-s}}{s^{2}} \right\} + \mathcal{L} \left\{ \frac{e^{-s}}{s^{3}} \right\} - \frac{1}{4} \mathcal{L} \left\{ \frac{e^{-s}}{s^{4}} \right\}$

 $=\left(\frac{1}{4}u_{1}(t)-\frac{1}{2}u_{1}(t)(t-1)+u_{1}(t)\frac{(t-1)^{2}}{2}-\frac{1}{4}u_{1}(t)e^{-2(t-1)}\right)$