Some practice problems

(1) Every solution to the second order ODE $y^{\prime \prime}+y=0$ is periodic. (That is, there is some number $T>0$ such that $y(t+T)=y(t)$ for all t.)
a. True
b. False
(2) The functions $y_{1}=e^{t}$ and $y_{2}=t^{2}$ can solve the same second order ODE of the form $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$ on the interval $(-1,1)$.
a. True
b. False
(3) The functions $y_{1}=e^{t}$ and $y_{2}=t e^{-2 t}$ can solve the same second order ODE of the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on the interval $(-1,1)$.
a. True
b. False
(4) The function $c_{1} e^{-2 t}+c_{2} t e^{-2 t}$ is a general solution of the ODE
a. $y^{\prime \prime}+2 y^{\prime}+y=0$
b. $y^{\prime \prime}+4 y^{\prime}+4 y=0$
c. $y^{\prime \prime}+3 y^{\prime}+2 y=0$
d. $y^{\prime \prime}+4 y^{\prime}+4 y=t$
(5) Find an ODE for which $y_{1}=e^{2 t} \cos (3 t)$ and $y_{2}=e^{2 t} \sin (3 t)$ are solutions.
(6) Find an ODE for which $y_{1}=\cos (2 t)+3 \sin (2 t)$ and $y_{2}=-\cos (2 t)+\sin (2 t)$ are solutions.
(7) Find an ODE for which $y_{1}=e^{-2 t}$ and $y_{2}=(t+3) e^{-2 t}$ are solutions.
(8) Solve the initial value problem $y^{\prime \prime}+5 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=-1$.
(9) Solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=-1$.
(10) Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=-1$.

