MATH 334, MIDTERM EXAM I, FALL 2021

INSTRUCTOR: TUAN PHAM

Name	Section # (Sec. 2: 11-12PM, Sec. 3: $12 - 1PM$)

Instructions:

- This is a closed-book exam, 2 hours long. Non-graphing calculators are allowed.
- For Problems 13, 14, 15, you must show valid arguments with all necessary steps. Mysterious answers will receive little or no credit.
- Do not discuss the exam with anyone before the exam window (Oct 6-8) is closed.

Problem	Possible points	Earned points
1-12	24	
13	10	
14	10	
15	10	
Total	54	

- $\begin{array}{c} (A) \quad y' = y^2 \\ B. \quad y' = ty^2 \end{array}$
- C. y' = t
- D. y' = y/2

Problem 2. (2 points) Choose the correct type for the ODE $y'y'' = y^3$.

- A. Linear autonomous of second order
- B. Nonlinear autonomous of third order
- C. Nonlinear autonomous of second order
- D. Nonlinear non-autonomous of second order

Problem 3. (2 points) Every solution to the ODE y' + y = t approaches to which of the following curves as $t \to \infty$?

- A. y = tB. y = t - 1C. y = 0
- D. $y = e^{-t}$

Problem 4. (2 points) The initial value problem $ty'' + 3y' + 2y = e^{-t}$, y(1) = 1, y'(1) = 2 is guaranteed to have a solution on which interval? (Choose the largest possible.)

- (A). $(0,\infty)$
- B. $(1,\infty)$
- C. $(-\infty, 1)$
- D. $(-\infty,\infty)$

Problem 5. (2 points) The ODE $xy' + e^x y = 2$ is an exact differential equation.

A. True B. False $N = \pi M = e^{\gamma}$ $N_{\pi} = 1 \neq M_{\pi} = e^{\gamma}$ **Problem 6.** (2 points) Let y be a solution to the initial value problem $y' = e^{-y}(1-y^2), y(-2) = 2$. What is the limit of y(t) as $t \to \infty$?

Problem 7. (2 points) If an autonomous ODE y' = f(y) has exactly two equilibrium states, then they cannot be both stable.

(A) True

B. False

Problem 8. (2 points) For two functions u and v, the Wronskian determinant W[u, v] is either zero for every t or nonzero for every t.

- A. True
- (B) False

Problem 9. (2 points) Consider the ODE y'' + y' - 2y = 0. Which of the following statements is false?

- A. The sum of two solutions is another solution.
- B. The difference of two solutions is another solution.
- (C) The product of two solutions is another solution.
- D. The derivative of a solution is another solution.

Problem 10. (2 points) According to Abel's theorem, the Wronskian determinant of two solutions of the ODE ty'' + (t-1)y' + y = 0 is equal to

A.
$$Ce^{t-1}$$

B. $C(e^{-t}+t)$
C. Cte^{-t}
D. $Ce^{\frac{t^2}{2}-t}$
W= $(enp(-\int p(t)dt) = Cenp(-\int (-1)dt) = Cenp(-t+lnt)$
Problem 11. (2 points) The function $y = te^{2t}$ solves which of the following ODE?
A. $y'' + 4y' + 4y = 0$
B. $y'' - 4y' + 4y = 0$
C. $y'' + 2y' - 0$
C. $y'' + 2y' + 2y' - 0$
C. $y'' + 2y' + 2y' - 0$
C. $y' + 2y' +$

A. y'' + 4y' + 4y = 0B. y'' - 4y' + 4y = 0C. y'' + 2y' = 0D. None of the above

Problem 12. (2 points) Let y be solution to the ODE y'' + 2y' + 2y = 0. What is the limit of y(t) as $t \to \infty?$

of the char. eq.

- A. Does not exist
- B. Exists and depends on the initial condition
- C. ∞

(D, 0)

ions

$$g = e^{-t}(q \cos t + c_2 \sin t) \longrightarrow \partial \quad \Rightarrow \quad t \to \infty$$

Problem 13. (10 points) Solve the following initial value problem using the exact differential method.

$$y' = \frac{2w - y}{2y + x}, \quad y(1) = 1$$

$$(2y + x)y' = 2x - y$$

$$(2y + x)y' + y - 2x = 0 \quad (x)$$

$$M_{y} = 1 = N_{x} \quad \longrightarrow \text{ the eq (w) is in end diff. form}$$

$$Find \quad \varphi: \quad \varphi_{x} = M = y - 2x \quad \longrightarrow \quad \varphi = xy - x + ((y))$$

$$d_{y} = x + C'(y)$$

$$W = x + 2y$$

$$M \quad C'(y) = 2y \quad \longrightarrow \quad C(y) = y' \quad \longrightarrow \quad \varphi = xy - x' + y'$$

$$Thus, \quad (t) \quad implies \quad xy - x' + y' = C,$$

$$This \ condition : \quad x = y = 1 \quad \longrightarrow \quad C = 1. \quad Thus,$$

$$(y - x' + y'' = 1)$$

$$Optimal: \quad y' + y - x' - (z = 0 \quad \longrightarrow \quad a = x'' - 4(-x' - t) = 5x'' + 4$$

$$y = \frac{x + \sqrt{5x'' + 4}}{2}$$

$$Choise the plus sign due to instral condition: \quad y = \frac{x + \sqrt{5x'' + 4}}{2}.$$

 $y'' + 2y' + y = 0, \quad y(0) = y'(0) = 1.$

Problem 14. (10 points) Solve the initial value problem

(har. eq.
$$r^{2}t^{2}rt^{2}=0 \longrightarrow r^{2}-1$$
 is a double root
 $y = e^{t}(at+b)$
 $y(at+b) = b \longrightarrow b^{2}/2$
 $y' = e^{t}a - e^{t}(at+b) = e^{t}(a-b-at)$
 $y'(0) = e^{0}(a-b-a0) = a-b = a-1 \longrightarrow a^{2}/2$
(orduston: $y = e^{t}(2t+1)$

Problem 15. (10 points) A container initially contains 100 gallons of seawater with salt concentration 0.25 lbs/gal. Fresh water is pumped into the container at the rate of 2 gal/min. At the same time, the well-mixed liquid is pumped out from the container at the same rate. How long does it take for the salt concentration in the container to reach 0.1 lbs/gal? Write your answer in term of minutes and round it up to 2 decimal points.

Volume = 100 gallons (doesn't change in time)

$$y = y(t): the amount of sult at time t.$$

$$y' = 2 \times 6 - 2 \times \frac{9}{100} = \frac{-3}{50}$$

$$y = Ce^{-\frac{4}{50}}.$$

$$\frac{y(0)}{100} = initial concentration = 0.25 \longrightarrow y(0) = 25 \longrightarrow (-25).$$
For the concentration to be 0.1 (bs/gal, we need $\frac{y(t)}{100} = 0.1$

$$y(t) = 10.$$
Solve for t from $25 e^{-\frac{4}{50}} = 10$

$$y = \frac{-\frac{4}{50}}{20} = \frac{2}{5} \longrightarrow -\frac{5}{50} = \ln(\frac{2}{5})$$

$$y = -50 \ln(\frac{2}{5}) \approx 45.81 (minutes)$$