MATH 334, MIDTERM EXAM II, FALL 2021

INSTRUCTOR: TUAN PHAM

Name	Section # (Sec. 2: 11-12PM, Sec. 3: 12-1PM)

Instructions:

- This is a closed-book exam, 2 hours long. Non-graphing calculators are allowed.
- For Problems 13, 14, 15, you must solve the ODE using the specified methods. Make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Some formulae are provided on the next page.
- Do not discuss the exam with anyone before the exam window is closed (Nov 10-12).

Problem	Possible points	Earned points
1-12	24	
13	10	
14	10	
15	10	
Total	54	

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
t^n , <i>n</i> a positive integer	$\frac{n!}{s^{n+1}}$
$\sin(at)$	$\frac{a}{s^2+a^2}$
$\cos(at)$	$\frac{s}{s^2+a^2}$
$\sinh(at)$	$\frac{a}{s^2-a^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s{-}a}{(s{-}a)^2{+}b^2}$
$t^n e^{at}$, <i>n</i> a positive integer	$\frac{n!}{(s-a)^{n+1}}$
$u(t) = \int 0 \text{if} t < c,$	e^{-cs}
$ \begin{array}{c} a_c(t) = \\ 1 \text{if} t \ge c \end{array} $	S
$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$e^{ct}f(t)$	F(s-c)
f(ct)	$rac{1}{c}F\left(rac{s}{c} ight)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$

Variation of parameter: y" + py' + qy = g, y = u₁y₁ + u₂y₂, u'₁ = -y₂g/W, u'₂ = y₁g/W.
Some power series:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!},$$

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k}}{k},$$

$$\sin x = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{(2k+1)!},$$

$$\cos x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!},$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k}$$

Problem 1. (2 points) Which of the following is the best choice for the form of the particular solution when using the Method of Undetermined Coefficients to solve the differential equation

$$2y'' - y' - y = te^{t}$$

Here, "best" means that all terms required by this method are included and no extra terms are included.

A. $Ate^t + Be^t$ (B) $At^2e^t + Bte^t$ C. Ate^t D. At^2e^t

Problem 2. (2 points) Consider a mass-spring system with m = 1, $\gamma = 3$, k = 2 with external force $F(t) = \sin t$. The *transient part* of the solution is of the form

(A) $c_1 e^{-t} + c_2 e^{-2t}$ B. $A \cos t + B \sin t$ C. $c_1 e^{-t} + c_2 e^{-2t} + A \cos t + B \sin t$ D. $c_1 e^{-t} + c_2 e^{-2t} + At \cos t + Bt \sin t$

Problem 3. (2 points) Consider a mass-spring system with external force $F(t) = \cos t$. Then, regardless of the initial conditions of the system, the vibration of the mass is always periodic.

A. True B. False

Problem 4. (2 points) An ODE with characteristic polynomial $(r+1)^2(r^2+1)$ has a general solution

A. $c_1 e^{-t} + c_2 \cos t + c_3 \sin t$ B. $c_1 e^{-t} + c_2 t e^{-t} + c_3 e^{-t} \cos t + c_4 e^{-t} \sin t$ C. $c_1 e^{-t} + c_2 t e^{-t} + c_3 \cos t + c_4 \sin t$ D. $c_1 t e^{-t} + c_2 \cos t + c_3 \sin t$

Problem 5. (2 points) Which of the following functions is NOT a solution of

$$y''' + 2y'' - y' - 2y = 0$$

A. $e^{t} + 2e^{-t}$ B. $2e^{-t} - e^{-2t}$ C. $3e^{t}$ D) $e^{t} + e^{2t}$

Problem 6. (2 points) The differential equation

 $(x^{2}+1)y''' + (\ln x)y'' + (\sqrt{1+x})y = 1$

is sure to have a solution on the interval

A. \mathbb{R} B. (0,1) C. (-1,0) D. (0, ∞) (A) $-2\sum_{k=0}^{\infty} 3^k x^k$ B. $2\sum_{k=0}^{\infty} (-3)^k x^k$ C. $-2\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k x^k$ D. $-2\sum_{k=0}^{\infty} \left(-\frac{2}{3}\right)^k x^k$

Problem 8. (2 points) The initial value problem

$$e^x y'' + xy = x$$
, $y(0) = -1$, $y'(0) = 1$

has a power series solution $y = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ The coefficients a_3 is equal to

A. -1/3B. 1/6C 1/3D. 0

Problem 9. (2 points) In solving the differential equation

$$y' - y = \frac{1}{1 - x}$$

by the power series method, one has $y = \sum_{n=0}^{\infty} a_n x^n$ where the coefficients a_n 's satisfy a recurrence relation

A. $a_{n+1} = \frac{1+a_n}{n-1}$ B. $a_{n+1} = \frac{1+a_n}{n+1}$ C. $a_n = \frac{1+a_{n+1}}{n+1}$ D. $a_n = \frac{1+a_{n+1}}{n-1}$

Problem 10. (2 points) For any function f and g, we have $\mathcal{L}{fg} = \mathcal{L}{f}\mathcal{L}{g}$.

A. True B False

Problem 11. (2 points) Which of the following improper integrals diverges?

A. $\int_{1}^{\infty} e^{-t} dt$ B. $\int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} dt$ C. $\int_{1}^{\infty} \frac{\sin t}{t^{2}+1} dt$ D) $\int_{0}^{\infty} \frac{t^{2}}{t^{3}+1} dt$

A.
$$\frac{2(s-1)}{(s-1)^2+9} + 1$$

B. $\frac{2s}{(s-1)^2+9}$
C. $\frac{2e(s-1)}{(s-1)^2+9}$
D. $\frac{2s}{s^2+9}$

Problem 13. (10 points) Solve the following initial value problem using the *Method of Undetermined Coefficients*.

$$y'' + 2y' + y = 4e^t, \ y(0) = 0, \ y'(0) = 1$$

 $y = y_c + y_p$ * Find y_c : Charaderishi eq. $r^2 + 2r + (=0) \longrightarrow r = -1$ (double root) $y_c = e^{-t}(q + tc_r)$

* Find yp: gaess
$$g_p = Ae^t$$
.
 $g_{i'} + 2g_{i'} + g_p = 4Ae^t \longrightarrow A = 1$.

Thus,
$$g = e^{t}(q + tc_{1}) + e^{t}$$

* Use initial anditions to determine c_{1}, c_{2} :
 $U = g(u) = q + | \longrightarrow q = -1$
 $g' = e^{t}c_{2} - e^{t}(q + bc_{2}) + e^{t} \longrightarrow g'(b) = 2 - q + 1 = 2 + 2$
 1
 $\longrightarrow c_{2} = -1$

In conclusion, $y = e^{-t}(-1-t) + e^{t}$

Problem 14. (10 points) Find the general solution of the following differential equation using the *Variation of Parameter Method.*

$$y'' - 3y' + 2y = te^t.$$

Characteristic eq.
$$r^2 - 3r + 2 = 0 \longrightarrow r_1 = 1, r_2 = 2$$

 $\neg g_1 = e^t, g_2 = e^{2t}$

$$W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{vmatrix} = e^{3t}$$

$$u_{l}' = -\frac{y_{2}}{W} = -\frac{e^{2t}te^{t}}{e^{3t}} = -t \quad \neg \pi \quad u_{l} = -\frac{t^{2}}{2} + q$$

$$h'_{2} = \frac{g_{1}g}{W} = \frac{e^{t}te^{t}}{e^{3t}} = te^{t} \longrightarrow u_{2} = \int te^{t}dt$$

Integration by part:
$$u = t$$
, $dv = e^{-t}dt$
 $du = dt$, $v = -e^{-t}$
 $u_{2} = \int te^{-t}dt = -te^{-t} + \int e^{-t}dt = -te^{-t} + c_{2}$

Thus,

$$g = u_1 y_1 + u_2 y_2 = \left(-\frac{t^2}{2} + c_1\right) e^{t} + \left(-t e^{-t} - e^{-t} + c_2\right) e^{2t}$$

Problem 15. (10 points) Solve the following initial value problem using *Laplace transform*.

$$y' - y = g(t), \quad y(0) = 0,$$

$$g(t) = \begin{cases} -1 & \text{if } t < 1, \\ 2 & \text{if } t > 1. \end{cases} = -1 + 3 u_{1}(t)$$
Take Laplace transform of both addes of $g' - g = -1 + 3 u_{1}(t)$:
$$s Y - y(0) - Y = -\frac{1}{s} + 3 \frac{e^{-s}}{s}$$

$$\longrightarrow \quad Y = -\frac{1}{s(s-1)} + 3e^{-s} \frac{1}{s(s-1)}$$

$$F(s) \qquad F(s) \qquad F(s)$$

$$(x)$$
Fractional decomposition:
$$F(s) = -\frac{1}{s-1} - \frac{1}{s} \implies \int_{s} \int_{s$$

$$y(t) = -e^{t} + 1 + 3u(t)(e^{t-1} - 1)$$