MATH 334, MIDTERM EXAM II, FALL 2021
INSTRUCTOR: TUAN PHAM

Name	Section \# (Sec. 2: 11-12PM, Sec. 3: 12-1PM)

Instructions:

- This is a closed-book exam, 2 hours long. Non-graphing calculators are allowed.
- For Problems 13, 14, 15, you must solve the ODE using the specified methods. Make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Some formulae are provided on the next page.
- Do not discuss the exam with anyone before the exam window is closed (Nov 10-12).

Problem	Possible points	Earned points
$1-12$	24	
13	10	
14	10	
15	10	
Total	54	

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}, n a positive integer	$\frac{n!}{s^{n+1}}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\frac{n!}{(s-a)^{n+1}}$	
$t^{n} e^{a t}, n$ a positive integer	$\frac{e^{-c s}}{s}$
$u_{c}(t)=\left\{\begin{array}{c}\text { if } t<c, \\ 1 \\ \text { if } \quad t \geq c\end{array}\right.$	$e^{-c s} F(s)$
$u_{c}(t) f(t-c)$	$F(s-c)$
$e^{c t} f(t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$
$f(c t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$
$f^{(n)}(t)$	

- Variation of parameter: $y^{\prime \prime}+p y^{\prime}+q y=g, \quad y=u_{1} y_{1}+u_{2} y_{2}, \quad u_{1}^{\prime}=-y_{2} g / W, u_{2}^{\prime}=y_{1} g / W$.
- Some power series:

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \\
\ln (1+x) & =\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}, \\
\sin x & =\sum_{k=0}^{\infty}(-1)^{k+1} \frac{x^{2 k+1}}{(2 k+1)!}, \\
\cos x & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}, \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}
\end{aligned}
$$

Problem 1. (2 points) Which of the following is the best choice for the form of the particular solution when using the Method of Undetermined Coefficients to solve the differential equation

$$
2 y^{\prime \prime}-y^{\prime}-y=t e^{t}
$$

Here, "best" means that all terms required by this method are included and no extra terms are included.
A. $A t e^{t}+B e^{t}$
B. $A t^{2} e^{t}+B t e^{t}$
C. Ate ${ }^{t}$
D. $A t^{2} e^{t}$

Problem 2. (2 points) Consider a mass-spring system with $m=1, \gamma=3, k=2$ with external force $F(t)=\sin t$. The transient part of the solution is of the form
A. $c_{1} e^{-t}+c_{2} e^{-2 t}$
B. $A \cos t+B \sin t$
C. $c_{1} e^{-t}+c_{2} e^{-2 t}+A \cos t+B \sin t$
D. $c_{1} e^{-t}+c_{2} e^{-2 t}+A t \cos t+B t \sin t$

Problem 3. (2 points) Consider a mass-spring system with external force $F(t)=\cos t$. Then, regardless of the initial conditions of the system, the vibration of the mass is always periodic.
A. True
B. False

Problem 4. (2 points) An ODE with characteristic polynomial $(r+1)^{2}\left(r^{2}+1\right)$ has a general solution
A. $c_{1} e^{-t}+c_{2} \cos t+c_{3} \sin t$
B. $c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} e^{-t} \cos t+c_{4} e^{-t} \sin t$
C. $c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} \cos t+c_{4} \sin t$
D. $c_{1} t e^{-t}+c_{2} \cos t+c_{3} \sin t$

Problem 5. (2 points) Which of the following functions is NOT a solution of

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0
$$

A. $e^{t}+2 e^{-t}$
B. $2 e^{-t}-e^{-2 t}$
C. $3 e^{t}$
(D. $e^{t}+e^{2 t}$

Problem 6. (2 points) The differential equation

$$
\left(x^{2}+1\right) y^{\prime \prime \prime}+(\ln x) y^{\prime \prime}+(\sqrt{1+x}) y=1
$$

is sure to have a solution on the interval
A. \mathbb{R}
B. $(0,1)$
C. $(-1,0)$
(D.) $(0, \infty)$

Problem 7. (2 points) Which of the following power series represents the function $\frac{2}{3 x-1}$?
(A. $-2 \sum_{k=0}^{\infty} 3^{k} x^{k}$
B. $2 \sum_{k=0}^{\infty}(-3)^{k} x^{k}$
C. $-2 \sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k} x^{k}$
D. $-2 \sum_{k=0}^{\infty}\left(-\frac{2}{3}\right)^{k} x^{k}$

Problem 8. (2 points) The initial value problem

$$
e^{x} y^{\prime \prime}+x y=x, \quad y(0)=-1, y^{\prime}(0)=1
$$

has a power series solution $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$ The coefficients a_{3} is equal to
A. $-1 / 3$
B. $1 / 6$
(C. $1 / 3$
D. 0

Problem 9. (2 points) In solving the differential equation

$$
y^{\prime}-y=\frac{1}{1-x}
$$

by the power series method, one has $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ where the coefficients a_{n} 's satisfy a recurrence relation
A. $\quad a_{n+1}=\frac{1+a_{n}}{n-1}$
B. $a_{n+1}=\frac{1+a_{n}}{n+1}$
C. $a_{n}=\frac{1+a_{n+1}}{n+1}$
D. $a_{n}=\frac{1+a_{n+1}}{n-1}$

Problem 10. (2 points) For any function f and g, we have $\mathcal{L}\{f g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}$.
A. True
(B) False

Problem 11. (2 points) Which of the following improper integrals diverges?
A. $\int_{1}^{\infty} e^{-t} d t$
B. $\int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} d t$
C. $\int_{1}^{\infty} \frac{\sin t}{t^{2}+1} d t$
(D. $\int_{0}^{\infty} \frac{t^{2}}{t^{3}+1} d t$

Problem 12. (2 points) The Laplace transform of function $f(t)=2 e^{t+1} \cos 3 t$ is equal to
A. $\frac{2(s-1)}{(s-1)^{2}+9}+1$
B. $\frac{2 s}{(s-1)^{2}+9}$
C. $\frac{2 e(s-1)}{(s-1)^{2}+9}$
D. $\frac{2 s}{s^{2}+9}$

Problem 13. (10 points) Solve the following initial value problem using the Method of Undetermined Coefficients.

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+y=4 e^{t}, y(0)=0, y^{\prime}(0)=1 \\
& y=y_{c}+y_{p}
\end{aligned}
$$

* Find y_{c} : characterishr eq. $r^{2}+2 r+1=0 \longrightarrow r=-1$ (double root)

$$
y_{c}=e^{-t}\left(c_{1}+t_{2}\right)
$$

*Find y_{p} : guess $y_{p}=A e^{t}$.

$$
y_{1}^{\prime \prime}+2 y_{p}^{\prime}+y_{p}=4 A e^{t} \leadsto A=1 .
$$

Thus, $y=e^{-t}\left(c_{1}+t c_{2}\right)+e^{t}$

* Use initial conditions to determine c_{1}, c_{2} :

$$
\begin{aligned}
& 0=y(0)=c_{1}+1 \leadsto c=-1 \\
& y^{\prime}=e^{-t} c_{2}-e^{-t}\left(4+t c_{2}\right)+e^{t} \leadsto \underbrace{y^{\prime}(0)}_{1}=c_{2}-c_{1}+1=c_{2}+2 \\
& \leadsto c_{2}=-1
\end{aligned}
$$

In conclusion,

$$
y=e^{-t}(-1-t)+e^{t}
$$

Problem 14. (10 points) Find the general solution of the following differential equation using the Variation of Parameter Method.

$$
y^{\prime \prime}-3 y^{\prime}+2 y=t e^{t}
$$

Charactenstice eq. $r^{2}-3 r+2=0 \leadsto r_{1}=1, r_{2}=2$

$$
\begin{aligned}
& \sim y_{1}=e^{t}, y_{2}=e^{2 t} \\
& W\left[y_{1}, y_{2}\right]=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{t} & e^{2 t} \\
e^{t} & 2 e^{2 t}
\end{array}\right|=e^{3 t} \\
& u_{1}^{\prime}=-\frac{y_{2} g}{w}=\frac{-e^{2 t} f e^{t}}{e^{3 t}}=-t \leadsto u_{1}=-\frac{t^{2}}{2}+G \\
& u_{2}^{\prime}=\frac{y_{1} g}{w}=\frac{e^{t} f e^{t}}{e^{3 t}}=t e^{-t} \leadsto u_{2}=\int t e^{-t} d t
\end{aligned}
$$

Integration by part: $u=t, d v=e^{-t} d t$

$$
\begin{aligned}
d u & =d t, \quad v=-e^{-t} \\
u_{2}=\int t e^{-t} d t & =-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t}+c_{2}
\end{aligned}
$$

Thus,

$$
y=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{t^{2}}{2}+c_{1}\right) e^{t}+\left(-t e^{-t}-e^{-t}+c_{2}\right) e^{2 t}
$$

Problem 15. (10 points) Solve the following initial value problem using Laplace transform.

$$
\begin{aligned}
& y^{\prime}-y=g(t), \quad y(0)=0, \\
& g(t)=\left\{\begin{array}{rll}
-1 & \text { if } & t<1, \\
2 & \text { if } & t>1
\end{array}\right.
\end{aligned}
$$

Take Laplace transform of both sides of $y^{\prime}-y=-1+3 u_{1}(t)$:

$$
\begin{align*}
& s Y-\underbrace{y(0)}_{0}-Y=-\frac{1}{s}+3 \frac{e^{-s}}{s} \\
& \leadsto Y=-\frac{1}{s(s-1)}+3 e^{-s} \frac{1}{\frac{1}{s(s-1)}} \\
& \underbrace{}_{F(s)} \tag{*}\\
& \leadsto y(t)=\mathcal{L}^{-1}\{Y\}=-\mathcal{L}^{-1}\{E\}+3 \mathcal{L}^{-1}\left\{e^{-s} F\right\}
\end{align*}
$$

Fractional decomposition:

$$
\begin{aligned}
F(s)=\frac{1}{s-1}-\frac{1}{s} \leadsto \mathcal{L}^{-1}\{F\} & =\mathcal{L}^{-1}\left\{\frac{1}{\delta-1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} \\
& =e^{t}-1=f(t)
\end{aligned}
$$

From $(*): \quad y(t)=-f(t)+3 u_{1}(t) f(t-1)$

$$
y(t)=-e^{t}+1+3 u_{1}(t)\left(e^{t-1}-1\right)
$$

