Final exam: Some problems for review

The exam will take place in our regular classroom TMCB 112 from 5 PM to 6:50 PM on Wednesday June 15,2022 . It is a closed-book exam, covering Sections 14.7-16.7. No calculators are allowed. The following formulae will be provided on the exam:

$$
\begin{gathered}
\left.D=f_{x x} f_{y y}-f_{x y}^{2} \text { (for Second Derivative test of function } f(x, y)\right) \\
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y= \\
z= \\
z \sin \phi \sin \theta, \quad \\
z \cos \phi
\end{array}\right. \\
\iint_{S} f d S=\iint_{R} f(r(u, v))\left|r_{u} \times r_{v}\right| d A \\
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} F(r(u, v)) \cdot\left(\pm r_{u} \times r_{v}\right) d A
\end{gathered}
$$

You should review the homework problems, especially the odd problems (solution in the back of the textbook), and the examples given in class. Also, take a look at the practice exam posted on Learning Suite. It is always a good idea to study with someone. You should know how to solve following problems:

- Find local/absolute min/max and saddle points of a function with or without constraints.
- Use Second Derivative test to classify the critical points into local min, local max, saddle point.
- Evaluate double/triple integral.
- Find the Jacobian of a change of variables.
- Use spherical and cylindrical coordinates to evaluate triple integrals.
- Sketch by hand a vector field.
- Check if a vector field is conservative. If it is, find the potential function.
- Find curl and divergence of a vector field. Interpret them on the picture.
- Evaluate line integral using: parametrization, fundamental theorem of Calculus, Green's theorem.
- Evaluate surface integral using parametrization.

Some problems for practice:

1. Let S be the portion of the cylinder $y=x^{2}, 0 \leq x \leq 1$, cut by the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$. Find $\iint_{S} x d S$.
2. Evaluate the flux of the vector field $F(x, y, z)=(4 x+z,-x-y, 2 y+z)$ across the triangle with vertices $(1,0,0),(0,2,0)$, and $(0,0,4)$ with downward orientation.
3. Evaluate the integral $\int_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$ where C is the closed triangular curve with vertices at $(0,0),(2,1),(0,1)$ oriented in that order.
4. Let S be the cylinder $y^{2}+z^{2}=5$. Find the equation of the tangent plane to S at the point $(3,2,1)$.
5. Compute $\iint_{D} \frac{y}{1+x^{2}} d A$ where D is the region bounded by $y=\sqrt{x}, y=0$ and $x=1$.
6. Compute $\iiint_{E} z d V$ where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.
7. Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ in the disk $x^{2}+y^{2} \leq 9$.
8. Find all critical points of the function $f(x, y)=x^{3}+x^{2}+x y+y^{2}$ and classify them using the Second Derivative test.
9. A function $f(x, y)$ has at most two critical points. True or false?
10. Let $F=\left(3 x^{2}+2 x y, x^{2}+2 y\right)$. Is F a conservative vector field? If so, what is a potential function of F ?
11. Let $F=\left(6 x y+y z, 3 x^{2}+x z, x y+2 z\right)$. Is F a conservative vector field? If so, what is a potential function of F ?
12. If F is a vector field then $\operatorname{div} F$ is also a vector field. True or false?
13. If F is a vector field then curl F is also a vector field. True or false?
14. A 2D vector field F is visualized as follows. What can you tell about the sign of $\operatorname{div} F$ and $\operatorname{curl} F$ at point $(1,-2)$?

15. Convert the Cartesian coordinates $(x, y, z)=(-2,2,2 \sqrt{6})$ into spherical coordinates.
16. Convert the spherical coordinates $(\rho, \theta, \phi)=(2, \pi / 3, \pi / 2)$ into Cartesian coordinates.
17. Describe the solid cut from the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ by the cone $z=\sqrt{x^{2}+y^{2}}$ in spherical coordinate. In other words, what are the ranges for ρ, θ, and ϕ ?
18. Evaluate $\iiint_{E}(z+1) d V$ where E is the solid enclosed by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
19. Use the change of variables $x=u^{2}, y=v^{2}$ to find the area of the region bounded by the curve $\sqrt{x}+\sqrt{y}=1$, the x-axis, and the y-axis.

Answer keys:

1) $\frac{1}{140}(50 \sqrt{5}+1)$
2) $-34 / 3$
3) Green's theorem: $\int_{0}^{2} \int_{x / 2}^{1}(2 x-2 y) d y d x=0$
4) $2 y+z-5=0$
5) $\frac{1}{4} \ln 2$
6) $8 \pi / 3$
7) $\min =-8, \max =9+12 \sqrt{2}$
8) Two critical points: $(-1 / 2,1 / 4)$ (saddle point) and $(0,0)$ (local minimum is attained)
9) False
10) Yes, because curl $F=Q_{x}-P_{y}=0$. Potential function $f(x, y)=x^{3}+x^{2} y+y^{2}$.
11) Yes, because curl $F=0$. Potential function $f(x, y, z)=3 x^{2} y+x y z+z^{2}$.
12) False
13) It depends. If F is a 3 D vector field, then yes. If F is a 2 D vector field, then no.
14) At $(1,-2)$, the divergence is positive, and the curl is negative.
15) $(\rho, \theta, \phi)=(4 \sqrt{2}, 3 \pi / 4, \pi / 6)$
16) $(x, y, z)=(1, \sqrt{3}, 0)$
17) $0 \leq \rho \leq 1,0 \leq \phi \leq \pi / 6,0 \leq \theta \leq 2 \pi$
18) 8π
19) $1 / 6$
