Midterm I: Some problems for review

The exam is two and a half hours long and taken at the Testing Center between May 19 and May 21. It is a closed book exam, covering Sections 12.1 - 14.6. No calculators or notes are allowed. You will be provided the following formula on the exam:

$$\kappa = \frac{|r' \times r''|}{|r'|^3}, \quad \tau = \frac{(r' \times r'') \cdot r'''}{|r' \times r''|^2}, \quad N = \frac{T'}{|T'|}, \quad a_T = \frac{r' \cdot r''}{|r'|}, \quad a_N = \frac{|r' \times r''|}{|r'|}.$$

You should review the homework problems, especially the odd problems (solution in the back of the textbook), and the examples given in class. Also, take a look at the practice exam posted on Learning Suite. It is always a good idea to study with someone. You should know how to solve following problems:

- Do basic operations on vectors: addition, scaling, dot product, cross product.
- Find equations of lines and planes.
- Parametrize a curve. Find length, curvature, torsion.
- Find velocity, speed, acceleration, tangential and normal components of acceleration.
- Find limit of a function.
- Find partial derivatives of a function.
- Write equation of a tangent plane to a surface at a given point.

In Problems 1-10, u, v, w are vectors in 3D. Determine whether the statement is true or false. Give reason for your answers.

1)
$$|u+v| = |u| + |v|$$

2)
$$|-2u| = 2|u|$$

- 3) $|u \times v| \le |u||v|$
- $4) |u \cdot v| \le |u||v|$
- 5) $|u \times v| \le |u \cdot v|$
- 6) $u \cdot v = v \cdot u$
- 7) $u \times v = v \times u$
- 8) $(u \times v) \times w = u \times (v \times w)$
- 9) $(u \times v) \cdot u = 0$
- 10) The vector (3, -1, 2) is parallel to the plane 6x 2y + 4z = 1.

In Problems 11-15, r(t) is a vector function of single variable. Determine whether the statement is true or false. Give reason for your answers.

- 11) The curve $r(t) = (0, t^2, 4t)$ is a parabola.
- 12) The curve r(t) = (2t, 3 t, 0) is a curve passing through the origin.
- 13) $\frac{d}{dt}|r(t)| = |r'(t)|$
- 14) The projection of the curve $r(t) = (\cos 2t, t, \sin 2t)$ onto the *xz*-plane is a circle.

15) If the curvature is equal to 0 everywhere on the curve then the curve must be a straight line.

In Problems 16-20, classify the given surfaces (cylinder/ ellipsoid/ elliptic paraboloid/ hyperbolic paraboloid/ etc).

- 16) In \mathbb{R}^3 , the graph of $y = x^2$ is a/an _____.
- 17) The set of points $\{(x, y, z) | x^2 + y^2 = 1\}$ is a/an _____.
- 18) In \mathbb{R}^3 , $x^2 + 4y^2 + z^2 = 1$ is the equation of a/an _____.
- 19) The set of points $\{(x, y, z) | x^2 + 4y^2 z = 0\}$ is a/an _____.
- 20) The set of points $\{(x, y, z) | x^2 4y^2 z = 0\}$ is a/an _____.

Write solutions to the following problems.

- 21) Write the equation of the plane passing through (2, 1, 0) and parallel to x + 4y 3z = 1.
- 22) Write the equation of the plane passing through (3, -1, 1), (4, 0, 2), (6, 3, 1).
- 23) Find the area of the triangle with vertices at (3, -1, 1), (4, 0, 2), (6, 3, 1).
- 24) Write the equation of the plane passing through (1, 2, -2) and containing the line x = 2t, y = 3 t, z = 1 + 3t.
- 25) Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 16$ and the plane x + z = 5.
- 26) Find the curvature of the parabola $y = x^2$ at the point (1, 1).
- 27) Write the equation of the tangent plane to the surface $z = 3x^2 y^2 + 2x$ at point (1, -2, 1).
- 28) The rate of change of function $f(x, y) = xy + y^2$ in the direction of vector (0, 1) at point (2, 1) is _____. At this point, the function increases the fastest in the direction of (unit) vector _____.
- 29) A function f(x, y) satisfying $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = f(x_0, y_0)$ is said to be _____ at (x_0, y_0) .
- 30) Where is the function $f(x, y) = \frac{e^x + e^y}{e^{xy} 1}$ continuous?
- 31) Along a level set of a function, the rate of change of the function is _____.
- 32) The graph of f(x, y) is ______ of g(x, y, z) = z f(x, y).
- 33) Let $u = \ln(1 + se^t)$. Express the total differential du in terms of ds and dt.
- 34) By Clairaut's Theorem, a smooth function f(x, y) has at most ______ different partial derivatives of third order.
- 35) Let f(x,y) = ax(1+y) + by. If $\nabla f(1,1) = \langle 2,1 \rangle$ then $a = _$ and $b = _$.
- 36) Find linear approximation of $f(x, y) = x^3 2xy^2$ around (1, 1).
- 37) If $f(x, y) \to L$ as $(x, y) \to (a, b)$ along every straight line through (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y) = L$. True or false?
- 38) $\lim_{(x,y)\to(1,1)}\frac{2xy^2}{x^2+y^2} =$ (or write DNE if the limit doesn't exist.)

39)
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2} =$$

40) $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} =$ _____

Solution keys:

1)	False	22)	-4x + 3y + z + 14 = 0
2)	True	23)	$\frac{\sqrt{26}}{2}$
3)	True	24)	6x + 9y - z = 26
4)	True	25)	$r(t) = \langle 4\cos t, 4\sin t, 5 - 4\cos t \rangle$
5)	False	26)	$\frac{2}{5^{3/2}}$
6)	True	27)	z = 8x + 4y + 1
7)	False	28)	4 and $\left<\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right>$
8)	False	29)	continuous
9)	True	20)	Even where in \mathbb{D}^2 except for the <i>x</i> axis and
10)	False	30)	the y-axis x^{-axis}
11)	True	31)	Zero
12)	False	32)	the 0-level set
13)	False	33)	$du = \frac{e^t}{1+se^t}ds + \frac{se^t}{1+se^t}dt$
14)	True	34)	4
15)	True	35)	a = 1 and $b = 0$
16)	parabolic cylinder	36)	$f(x, y) \approx -1 + f_x(1, 1)(x - 1) + f_y(1, 1)(y - 1)$
17)	circular cylinder	,	1) = x - 4y + 2
18)	ellipsoid	37)	False. Can you give an example?
19)	elliptic paraboloid	38)	1
20)	hyperbolic paraboloid	39)	0
21)	x + 4y - 3z = 6	40)	DNE