Plotting surfaces and curves on Mathematica

Below are some examples of plotting in Mathematica using the commands Plot3D, ContourPlot3D, and ParametricPlot3D. To learn more options to each command, you can go to Help, choose 'Find Selected Function', and type the command's name.

1. Surfaces

The command Plot3D is used to plot surfaces that are graphs of a function $f(x, y)$, for example $z=f(x, y)=x+y, x^{2}+y^{2}, \sin (x) y, \ldots$

The command ContourPlot3D is used to plot surfaces given by an equation, for example $x^{2}+y^{2}=1, x+y^{2}-z=3, \sin (y z)=0, \ldots$

The command ParametricPlot3D is used to plot surfaces given by parametric equations, for example $x=t \cos t, y=t \sin t, z=t$.

You can rotate each 3D picture plotted in Mathematica by placing the mouse on the picture and drag it.

- Plot the graph of function $f(x, y)=x \sin y$.

```
Plot3D[x*Sin[y], {x, -1, 1}, {y, -Pi, Pi}]
```


- Plot the one-sheet elliptic hyperboloid $x^{2}+y^{2}-z^{2}=1$.

```
ContourPlot3D[
    x^2 + y^2 - z^^2 == 1, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]
```


- Plot the surface $x=(2+\cos t) \cos s, y=(2+\cos t) \sin s, z=\sin t$.


```
ParametricPlot3D[{(2 + Cos[t])*Cos[s], (2 + Cos[t])*
    Sin[s], Sin[t]}, {t, 0, 2*Pi}, {s, 0, Pi/2}]
```

- Plot the one-sheet elliptic hyperboloid $x^{2}+y^{2}-z^{2}=1$ and the plane $x+y-z=1$ to see the trace.

```
ContourPlot3D[{x^2 + y^2 - z^2 == 1, x + y - z == 1}, {x, -2,
```

 \(2\},\{y,-2,2\},\{z,-2,2\}]\)

2. Curves

The command ParametricPlot3D is used to plot a curve given by parametric equations.

- Plot the curve $r(t)=\langle t \cos t, t \sin t, t\rangle$.

ParametricPlot3D[\{t*Cos[t], $t * \operatorname{Sin}[t], \mathrm{t}\},\{\mathrm{t}, 0,30\}]$

- The parametric equations also show us how a curve is drawn. For example, consider the curve parametrized by $r(t)=\langle t \cos t, t \sin t, t\rangle$.
p[s_] := ParametricPlot3D[\{t*Cos[t], t*Sin[t], t\}, \{t, 0, s\}, PlotRange -> \{\{-30, 30\}, $\{-30,30\}$, \{0, 30\}\}]
Manipulate[p[s], \{s, 0.1, 30\}]

