MATH 314, MIDTERM, SPRING 2022

INSTRUCTOR: TUAN PHAM

	Name	

Instructions:

- This is a closed-book exam, 2 hours and 30 minutes long. No calculators or notes are allowed.
- For Problems 1-15, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 16, 17, 18, make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Some formulae are provided below.
- Do not discuss the exam with anyone during May 19-21.

Problem	Possible points	Earned points
1-15	30	
16	10	
17	10	
18	10	
Total	60	

$$\kappa = \frac{|r' \times r''|}{|r'|^3}, \quad \tau = \frac{(r' \times r'') \cdot r'''}{|r' \times r''|^2}, \quad N = \frac{T'}{|T'|}, \quad a_T = \frac{r' \cdot r''}{|r'|}, \quad a_N = \frac{|r' \times r''|}{|r'|}$$

Problem 1. (2 points) Consider three points A(1,2,3), B(2,3,4), C(3,2,3). Which of the following statements is true ?

A. $|\overrightarrow{AB}| = |\overrightarrow{AC}|$

B.
$$|\overrightarrow{AB}| = |\overrightarrow{BC}|$$

- C. $|\overrightarrow{BC}| = |\overrightarrow{AC}|$
- D. None of the above

Problem 2. (2 points) The set of triples (x, y, z) satisfying $x^2 + 2x + y^2 - 2y + z^2 = 2$ is a sphere

- A. centered at (-1, 1, 0) with radius 2
- B. centered at (1, -1, 0) with radius 2
- C. centered at (-1, 1, 0) with radius $\sqrt{2}$
- D. centered at (1, -1, 0) with radius $\sqrt{2}$

Problem 3. (2 points) For what value of x is the angle between vector (1, x, 1) and vector (0, 1, 1) is 45° ?

- A. -1
- B. -1/2
- C. 0
- D. 1/2

Problem 4. (2 points) Find the area of the triangle with vertices at A(3,1,1), B(2,1,0), C(-1,2,2).

A. $\frac{\sqrt{27}}{2}$ B. $\frac{\sqrt{19}}{2}$ C. $\frac{\sqrt{11}}{2}$ D. $\frac{\sqrt{10}}{2}$ **Problem 5.** (2 points) The surface given by $x = y^2 + 3z^2$ is called a/an

- A. ellipsoid
- B. cone
- C. elliptic paraboloid
- D. hyperbolic paraboloid

Problem 6. (2 points) At what points does the line parametrized by x = t, y = 0, z = t - 1 intersect the sphere $x^2 + y^2 + z^2 = 1$?

A. (0,0,-1) and (-1,0,0)B. (0,0,-1) and (1,0,0)C. (0,0,1) and (-1,0,-2)D. (0,0,1) and (1,0,0)

Problem 7. (2 points) The line tangent to the curve $r(t) = (t^2 + t, 4e^{t-1}, t+1)$ at the point (2, 4, 2) has parametric equations

A. x = 3 + 4t, y = 4 + 4t, z = 1 + 2tB. $x = 2t^2 + t + 2$, $y = 4te^{t-1} + 4$, z = t + 2C. x = 2 + 3t, y = 4 + 4t, z = 2 + tD. $x = t^3 + t^2 + 3$, $y = 4te^{t-1} + 4$, $z = t^2 + t + 1$

Problem 8. (2 points) The length of the spiral curve $r(t) = (\sin t, t, \cos t)$, where $0 \le t \le \pi$ is

A. 2π B. $\pi/2$ C. π^2 D. $\pi\sqrt{2}$

Problem 9. (2 points) A vector function r(t) satisfies $r'(t) = (t, t^2)$ and r(1) = (1, 1). Which of the following is the correct formula of r(t)?

A. $\left(\frac{t^2}{2} + 1, \frac{t^3}{3} + 1\right)$ B. $\left(\frac{t^2+1}{2}, \frac{t^3+2}{3}\right)$ C. (1, t)D. (t, 1) **Problem 10.** (2 points) Which of the following statements is false about the motion of an object along the unit circle?

- A. The velocity is always tangent to the circle.
- B. The acceleration is always equal to the derivative of the velocity.
- C. The acceleration always points toward the inside of the circle.
- D. The tangential acceleration is always equal to zero.

Problem 11. (2 points) The position function of a moving particle is given by $r(t) = (-\frac{t^2}{2}, t)$. What is the speed of the particle at time t = 1?

- A. $\frac{1}{\sqrt{2}}$
- B. $\sqrt{2}$
- C. $\frac{1}{2\sqrt{2}}$
- D. (-1, 1)

Problem 12. (2 points) A contour map of the function $f(x,y) = \sqrt{1 - 9x^2 - 4y^2}$ consists of

- A. ellipses
- B. parabolas
- C. hyperbolas
- D. concentric circles

Problem 13. (2 points) Find $\lim_{(x,y)\to(0,0)} \frac{x^3 - y^2}{x^2 + y^2}$.

- A. 1
- B. -1
- C. 0
- D. does not exist

Problem 14. (2 points) The plane tangent to the graph of $f(x,y) = x^2 + xy + y^2$ at the point (1, -1, 1) has an equation

A. z = x - y + 3B. z = -x + y + 3C. z = x - y - 1D. z = -x + y - 1

Problem 15. (2 points) Let $f(x,y) = \ln(x^2 + y^2)$. Which of the following is the correct formula of f_{xx} ?

A.
$$\frac{-4xy}{x^2 + y^2}$$

B. $\frac{4xy}{x^2 + y^2}$
C. $\frac{2(y^2 - x^2)}{x^2 + y^2}$
 $2(x^2 - y^2)$

B.
$$\frac{4xy}{x^2 + y^2}$$
 D. $\frac{2(x^2 - y^2)}{x^2 + y^2}$

Problem 16. (10 points) Write the equation of the plane passing through three points (2, -1, 1), (1, 0, 2), (1, 1, 4).

$$\overrightarrow{B} \quad \overrightarrow{C}$$

$$\overrightarrow{AB} = (-1, 1, 1)$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = (1, 2, -1) \text{ is a normal vector of the plane.}$$

$$\overrightarrow{Eq.} \quad \overrightarrow{PL} = (0, 1, 2)$$

$$1(n-2)+2(g+1)+(-1)(z-1)=0$$

- 1 T	Y
•••	

$$(x+2y-3=-1)$$

Problem 17. (10 points) At what point does the curve $y = e^x$ (on the *xy*-plane) have a maximum curvature? Find that curvature.

$$r(t) = (t_1 e^{t_1} o)$$

$$r'(t) = (l_1 e^{t_1} o)$$

$$r'_{xr'} = (0, o, e^{t})$$

$$r''(t) = (0, e^{t_1} o)$$

$$k = \frac{|t'_{xr'}|}{|t|^3} = \frac{e^{t}}{(1 + e^{2t})^{3/2}} \quad \text{(in the maximize this function)}$$

Let $u = e^{t} > 0$.

$$k = \frac{e^{t}}{(1 + e^{2t})^{3/L}} = \frac{u}{(1 + u^{2})^{3/L}} = f(u)$$

Find critical points of f:

$$f' = \frac{(1+u^{2})^{3/2} - \frac{3}{2} 2u u (1+u^{2})^{1/2}}{(1+u^{2})^{3}} = \frac{(1+u^{2})^{1/2} ((1+u^{2}) - 3u^{2})}{(1+u^{2})^{3}}$$

$$= \frac{(1+u^{2})^{3/2} - 3u^{2}(1+u^{2})^{3/2}}{(1+u^{2})^{3}} = \frac{(1-2u^{2})^{3/2}}{(1+u^{2})^{3/2}}$$

 $k_{man} = man f(u) = f(\frac{1}{12}) = \frac{1}{(1+\frac{1}{2})^{3/2}} = \frac{1}{\sqrt{2}} \frac{2^{3/2}}{5^{3/2}} = \frac{2}{\sqrt{2}} \frac{2}{5^{3/2}}.$

Problem 18. (10 points) Let $w = xy^2 + yz + z^2$, where x = 2u - v, y = u + v, and z = uv. View w as a function of u and v. Use the chain rule to find $w_u(2, 1)$.

$$-7 \ w_{u} = 2y^{2} + (2uy + z) + r(y + 2z).$$
When $u = 2$ and $v = 1$, we get $u = 3$, $y = 3$, $z = 2$.
Therefore,
$$w_{u}(2,1) = 2(3)^{2} + (2(3)(3) + 2) + 1(3 + 20))$$

$$= 18 + 20 + 7$$

$$= (45)$$