Final exam: Some problems for review

1. Let $F=\langle P, Q\rangle$ be a vector field defined on the entire plane. What is the condition of P and Q for F to be conservative? $\quad Q_{x}=P_{y}$ (note that the entire plane is simply connected)
2. Let $F=\langle P, Q, R\rangle$ be a vector field defined on the entire space. What is the condition of P, Q, R for F to be conservative? $\mathrm{Curl}\left(F=0 \quad\left(\mathbb{R}^{3}\right.\right.$ is simply connected)
3. Let $F=\left\langle 3 x^{2}+2 x y, x^{2}+2 y\right\rangle$. Is F a conservative vector field? If so, what is a potential function of F ? $\quad y_{c s}$, because $P_{y}=Q_{x} . \quad f\left(x_{y y}\right)=x^{3}+x^{2} y+y^{2}$
4. If F is a vector field then $\operatorname{div} F$ is also a vector field. True or arses?
5. If F is a vector field then curl F is also a vector field. True or false?
6. If f is a scalar function then $\operatorname{div}(\nabla f)=0$. True or false $f\left(x_{11}\right)=x^{2}+y^{2}$
7. If F is a vector field then $\operatorname{div}(\operatorname{curl} F)=0$. True or false?
8. If F is a vector field then $\operatorname{curl}(\operatorname{curl} F)=0$. True or $f(x, y, z)=\left\langle y^{2}, 0,0\right\rangle$
9. If f is a scalar function then $\operatorname{curl}(\nabla f)=0$. True or false?
10. The spherical coordinates:

$$
\begin{cases}x=\rho \sin \phi \cos \theta & 0 \leqslant \theta \leq 2_{\pi} \\ y=\rho \sin \phi \sin \theta & 0 \leqslant \phi \leqslant \pi \\ z=\rho \cos \phi & 0 \leqslant \pi\end{cases}
$$

What is the range of θ and ϕ ?
11. Convert the Cartesian coordinates $(x, y, z)=(-2,2,2 \sqrt{6})$ into spherical coordinates.
12. Convert the spherical coordinates $(\rho, \theta, \phi)=(2, \pi / 3, \pi / 2)$ into Cartesian coordinates.
13. Find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the transform $x=u^{2}+u v, y=u v^{2}$.
14. Find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ of the transform $x=u^{2}, y=v^{2}, z=w^{2}$.
15. In the spherical coordinates, $d V=$ \qquad $d \rho d \phi d \theta$.
16. Find the volume of the solid enclosed by $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$.
17. Evaluate the integral $\int_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$ where C is the triangle with vertices at $(0,0),(2,1),(0,1)$. positively arrested.
Pcb II $\rho=4 \sqrt{2}, \phi=\frac{\pi}{6}, \theta=\frac{3 \pi}{4}$
2 at $12 x=1, y=\sqrt{3}, z=0$
Rob B $\quad\left|\begin{array}{ll}x_{y} & v_{0} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{cc}2 x+\sigma & u \\ v^{2} & 2 u v\end{array}\right|=4 u^{2} v+4 v^{2}$

Prob 14

$$
\frac{\partial(x, y, z)}{\partial(u, 0, \omega)}=\left|\begin{array}{ccc}
x_{u} & x_{\sigma} & x_{\omega} \\
y_{u} & y_{\sigma} & y_{\omega} \\
z_{u} & z_{v} & z_{\omega}
\end{array}\right|=\left|\begin{array}{ccc}
2 u & 0 & 0 \\
0 & 2 \sigma & 0 \\
0 & 0 & 2 \omega
\end{array}\right|=\delta_{u v \omega}
$$

Prob 15

$$
d V=\underbrace{\rho^{2} \sin \phi} d \rho d \phi d \theta
$$

Jacobian (you can memonze this for the final exam)
Prob 6
Change of variables: $x=u^{2}, y=v^{2}, z=w^{2}$
$E: \sqrt{x}+\sqrt{y}+\sqrt{z} \leq 1 \longrightarrow u+v+v \leq 1\} E^{\prime}$

$$
\operatorname{vol}(E)=\iiint_{E} 1 d V=\iiint_{E^{\prime}} 8 u v \omega d w d v d u=\int_{T_{u}}^{1-u} \int_{0}^{1-u} \int_{\delta}^{1-u-v} 8 u v w d w d v d u
$$

Jacobian
frob 17

$$
\int_{c} \underbrace{\left(x^{2}+y^{2}\right)}_{p} d x+\underbrace{\left(x^{2}-y^{2}\right)}_{Q} d y
$$

$\frac{\text { Green's }}{\text { theorem }} \iint_{D}\left(Q_{x}-P_{y}\right) d A$

$$
\begin{array}{r}
=\iint_{D}(2 x-2 y) d A \\
=\int_{0}^{2} \int_{x / 2}^{1}(2 x-2 y) d y d x=\cdots
\end{array}
$$

