- 1. The rate of change of function $f(x,y) = xy + y^2$ in the direction of vector (0,1) at point (2,1)is -4. At this point, the function increases the fastest in the direction of the unit vector
- 2. A function f(x,y) satisfying $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$ is said to be <u>Continuous</u> at (x_0, y_0)
- 3. Along a level set of a function, the rate of change of the function is _____. 4. Let $u = \ln(1 + se^t)$. Express du in terms of ds and dt. $du = u_s ds + u_t dt = \frac{z^t}{1 + se^t} ds + \frac{se^t}{1 + se^t} dt$
- 5. By Clairaut's Theorem, a smooth (i.e. infinitely differentiable) function f(x, y) has at most -4 different partial derivatives of third order.
- 6. Let f(x,y) = ax + by. If $\nabla f(1,1) = \langle 2,1 \rangle$ then $a = \underline{2}$ and $b = \underline{2}$.
- 7. A critical point of a function f is where $\square \nabla f$ is equal to zero.
- 8. A function f(x, y) has at most two critical points. True or false?
- 9. The absolute maximum over \mathbb{R}^2 of a function f(x, y), if exists, must be attained at a critical point. True or false?
- 10. The absolute maximum over the square $[0,1] \times [0,1]$ of a function f(x,y), if exists, must be attained at a critical point inside the square or one of the four corner points. True or false?

 $\int_{2\pi} = e^{2y} (2y + 2y^2)$

11. $\lim_{(x,y)\to(1,1)} \frac{2xy^2}{x^2+y^2} =$ (or write DNE if the limit doesn't exist.)

12.
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2} =$$

13.
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = 0$$

- 13. $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = \underbrace{\text{ONE}}_{x^2+y^2}$ 14. Let $f(x,y) = xe^{xy}$. Find the partial derivatives of second order. 15. Write the equation of the tangent plane to the surface $z = 3x^2 y^2 + 2x$ at point (1, -2, 1).
- 16. Find the maximum and minimum values of $f(x, y) = x^2 + y^2 + 4x 4y$ in the disc $x^2 + y^2 \le 9$.
- 17. Find the maximum and minimum values of $f(x, y) = x^2 + y^2 + 4x 4y$ on the circle $x^2 + y^2 = 9$.

15.
$$8x + 4y - z + 1 = 0$$

16. $\max = 9 + 12\sqrt{2}$, attained at $(x, y) = (\frac{3}{12}, -\frac{3}{12})$
 $\min = 9 - 12\sqrt{2}$, attained at $(x, y) = (-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}})$.
17. The same results as Problem 16.

- 18. Compute $\int \int_D \frac{y}{1+x^2} dA$ where D is the region bounded by $y = \sqrt{x}$, y = 0 and x = 1.
- 19. Compute $\int \int \int_E (x+y+z) dV$ where E is the solid in the first octant that lies under the paraboloid $z = 4 x^2 y^2$.
- 20. Write the iterated integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) dy dz dx$$

as iterated integral in the five other orders.

Integrate[x + y + z, {x, y, z} \[Element] V]

(You are not allowed to use Mathematica during the exam!)

The other three are done similarly.