Midterm II: Some problems for review

1. The rate of change of function $f(x, y)=x y+y^{2}$ in the direction of vector $\langle 0,1\rangle$ at point $(2,1)$ is \qquad At this point, the function increases the fastest in the direction of the unit vector
\qquad
2. A function $f(x, y)$ satisfying $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$ is said to be \qquad at $\left(x_{0}, y_{0}\right)$.
3. Along a level set of a function, the rate of change of the function is \qquad
4. Let $u=\ln \left(1+s e^{t}\right)$. Express $d u$ in terms of $d s$ and $d t$.
5. By Clairaut's Theorem, a smooth (i.e. infinitely differentiable) function $f(x, y)$ has at most
\qquad different partial derivatives of third order.
6. Let $f(x, y)=a x+b y$. If $\nabla f(1,1)=\langle 2,1\rangle$ then $a=$ \qquad and $b=$ \qquad
7. A critical point of a function f is where \qquad is equal to zero.
8. A function $f(x, y)$ has at most two critical points. True or false?
9. The absolute maximum over \mathbb{R}^{2} of a function $f(x, y)$, if exists, must be attained at a critical point. True or false?
10. The absolute maximum over the square $[0,1] \times[0,1]$ of a function $f(x, y)$, if exists, must be attained at a critical point inside the square or one of the four corner points. True or false?
11. $\lim _{(x, y) \rightarrow(1,1)} \frac{2 x y^{2}}{x^{2}+y^{2}}=$ \qquad (or write DNE if the limit doesn't exist.)
12. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{2}}=$ \qquad
13. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+y^{2}}=$ \qquad
14. Let $f(x, y)=x e^{x y}$. Find the partial derivatives of second order.
15. Write the equation of the tangent plane to the surface $z=3 x^{2}-y^{2}+2 x$ at point $(1,-2,1)$.
16. Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ in the disc $x^{2}+y^{2} \leq 9$.
17. Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ on the circle $x^{2}+y^{2}=9$.
18. Compute $\iint_{D} \frac{y}{1+x^{2}} d A$ where D is the region bounded by $y=\sqrt{x}, y=0$ and $x=1$.
19. Compute $\iiint_{E}(x+y+z) d V$ where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.
20. Write the iterated integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x
$$

as iterated integral in the five other orders.

