Midterm II: Some problems for review

- 1. The rate of change of function $f(x,y) = xy + y^2$ in the direction of vector (0,1) at point (2,1) is ______. At this point, the function increases the fastest in the direction of the unit vector _____.
- 2. A function f(x,y) satisfying $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$ is said to be _____ at (x_0,y_0) .
- 3. Along a level set of a function, the rate of change of the function is ______.
- 4. Let $u = \ln(1 + se^t)$. Express du in terms of ds and dt.
- 5. By Clairaut's Theorem, a smooth (i.e. infinitely differentiable) function f(x, y) has at most different partial derivatives of third order.
- 6. Let f(x,y) = ax + by. If $\nabla f(1,1) = (2,1)$ then a = 1 and b = 1.
- 7. A critical point of a function f is where ______ is equal to zero.
- 8. A function f(x,y) has at most two critical points. True or false?
- 9. The absolute maximum over \mathbb{R}^2 of a function f(x,y), if exists, must be attained at a critical point. True or false?
- 10. The absolute maximum over the square $[0,1] \times [0,1]$ of a function f(x,y), if exists, must be attained at a critical point inside the square or one of the four corner points. True or false?
- 11. $\lim_{(x,y)\to(1,1)} \frac{2xy^2}{x^2+y^2} =$ (or write DNE if the limit doesn't exist.)
- 12. $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2} = \underline{\hspace{1cm}}$
- 13. $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = \underline{\hspace{1cm}}$
- 14. Let $f(x,y) = xe^{xy}$. Find the partial derivatives of second order.
- 15. Write the equation of the tangent plane to the surface $z = 3x^2 y^2 + 2x$ at point (1, -2, 1).
- 16. Find the maximum and minimum values of $f(x,y) = x^2 + y^2 + 4x 4y$ in the disc $x^2 + y^2 \le 9$.
- 17. Find the maximum and minimum values of $f(x,y) = x^2 + y^2 + 4x 4y$ on the circle $x^2 + y^2 = 9$.

- 18. Compute $\int \int_D \frac{y}{1+x^2} dA$ where D is the region bounded by $y = \sqrt{x}$, y = 0 and x = 1.
- 19. Compute $\iint_E (x+y+z)dV$ where E is the solid in the first octant that lies under the paraboloid $z=4-x^2-y^2$.
- 20. Write the iterated integral

$$\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) dy dz dx$$

as iterated integral in the five other orders.