Midterm I: Some problems for review

You will be provided the following formula on the exam:

$$
\begin{gathered}
\kappa=\frac{\left|r^{\prime} \times r^{\prime \prime}\right|}{\left|r^{\prime}\right|^{3}}, \quad \tau=\frac{\left(r^{\prime} \times r^{\prime \prime}\right) \cdot r^{\prime \prime \prime}}{\left|r^{\prime} \times r^{\prime \prime}\right|^{2}}, \quad N=\frac{T^{\prime}}{\left|T^{\prime}\right|}, \quad B=T \times N, \\
a_{T}=V^{\prime}, \quad a_{N}=\kappa V^{2}, \quad V=\left|r^{\prime}\right|
\end{gathered}
$$

For Problems 1-17, determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

1. If $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$, then $\mathbf{u} \cdot \mathbf{v}=\left\langle u_{1} v_{1}, u_{2} v_{2}\right\rangle$.

Answer \downarrow
2. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u}+\mathbf{v}|=|\mathbf{u}|+|\mathbf{v}|$.
3. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \cdot \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$.

Answer \downarrow
4. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$.
5. For any vectors \mathbf{u} and \mathbf{v} in $V_{3}, \mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.

Answer \downarrow
6. For any vectors \mathbf{u} and \mathbf{v} in $V_{3}, \mathbf{u} \times \mathbf{v}=\mathbf{v} \times \mathbf{u}$.
7. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},|\mathbf{u} \times \mathbf{v}|=|\mathbf{v} \times \mathbf{u}|$.

```
Answer \
```

8. For any vectors \mathbf{u} and \mathbf{v} in V_{3} and any scalar k,

$$
k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}
$$

9. For any vectors \mathbf{u} and \mathbf{v} in V_{3} and any scalar k,

$$
k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}
$$

Answer \downarrow

10. For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V_{3},

$$
(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}
$$

11. For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V_{3},

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}
$$

12. For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V_{3},

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}
$$

13. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0$.

Answer \downarrow
14. For any vectors \mathbf{u} and \mathbf{v} in $V_{3},(\mathbf{u}+\mathbf{v}) \times \mathbf{v}=\mathbf{u} \times \mathbf{v}$.
15. The vector $\langle 3,-1,2\rangle$ is parallel to the plane

$$
6 x-2 y+4 z=1
$$

Answer \downarrow

16. A linear equation $A x+B y+C z+D=0$ represents a line in space.
17. A linear equation $A x+B y+C z+D=0$ represents a line in space.
18. The set of points $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$ is a circle.

Answer \downarrow
18. In \mathbb{R}^{3} the graph of $y=x^{2}$ is a paraboloid.
19. If $\mathbf{u} \cdot \mathbf{v}=0$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.

Answer 1
20. If $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.
21. If $\mathbf{u} \cdot \mathbf{v}=0$ and $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.

Answer \downarrow
22. If \mathbf{u} and \mathbf{v} are in V_{3}, then $|\mathbf{u} \cdot \mathbf{v}| \leqslant|\mathbf{u}||\mathbf{v}|$.
18. The plane through $(2,1,0)$ and parallel to $x+4 y-3 z=1$
19. The plane through $(3,-1,1),(4,0,2)$, and $(6,3,1)$

```
Answer \
```

20. The plane through $(1,2,-2)$ that contains the line $x=2 t, y=3-t, z=1+3 t$
21. An ellipsoid is created by rotating the ellipse $4 x^{2}+y^{2}=16$ about the x-axis. Find an equ ellipsoid.
22. $f(x, y)=\ln (x+y+1)$

Answer \downarrow
2. $f(x, y)=\sqrt{4-x^{2}-y^{2}}+\sqrt{1-x^{2}}$
$\underline{3}-\underline{4}$ Sketch the graph of the function.
3. $f(x, y)=1-y^{2}$

Answer \downarrow
4. $f(x, y)=x^{2}+(y-2)^{2}$

5-6 Sketch several level curves of the function.
5. $f(x, y)=\sqrt{4 x^{2}+y^{2}}$

Answer \downarrow
6. $f(x, y)=e^{x}+y$

