Midterm I: Some problems for review

You will be provided the following formula on the exam:

$$\kappa = \frac{|r' \times r''|}{|r'|^3}, \quad \tau = \frac{(r' \times r'') \cdot r'''}{|r' \times r''|^2}, \quad N = \frac{T'}{|T'|}, \quad B = T \times N,$$
$$a_T = V', \quad a_N = \kappa V^2, \quad V = |r'|.$$

For Problems 1-17, determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- 1. If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$, then $\mathbf{u} \cdot \mathbf{v} = \langle u_1 v_1, u_2 v_2 \rangle$. Answer \clubsuit
- 2. For any vectors **u** and **v** in V_3 , $|\mathbf{u} + \mathbf{v}| = |\mathbf{u}| + |\mathbf{v}|$.
- 3. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}|$.

Answer 🕈

- 4. For any vectors **u** and **v** in V_3 , $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}|$.
- 5. For any vectors **u** and **v** in V_3 , $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.

Answer 🖶

- 6. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.
- 7. For any vectors **u** and **v** in V_3 , $|\mathbf{u} \times \mathbf{v}| = |\mathbf{v} \times \mathbf{u}|$.

Answer 🕈

8. For any vectors **u** and **v** in V_3 and any scalar k,

$$k\left(\mathbf{u}\cdot\mathbf{v}\right) = (k\mathbf{u})\cdot\mathbf{v}$$

9. For any vectors **u** and **v** in V_3 and any scalar k,

$$k \left(\mathbf{u} imes \mathbf{v}
ight) = \left(k \mathbf{u}
ight) imes \mathbf{v}$$

Answer 🕈

10. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 ,

$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$$

11. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 ,

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

12. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 ,

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$$

13. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$.

Answer 🕈

- 14. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $(\mathbf{u} + \mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v}$.
- 15. The vector (3, -1, 2) is parallel to the plane

$$6x - 2y + 4z = 1$$

Answer 🕈

16. A linear equation Ax + By + Cz + D = 0 represents a line in space.

- 16. A linear equation Ax + By + Cz + D = 0 represents a line in space.
- 17. The set of points $\{(x, y, z) \mid x^2 + y^2 = 1\}$ is a circle.

- 18. In \mathbb{R}^3 the graph of $y = x^2$ is a paraboloid.
- 19. If $\mathbf{u} \cdot \mathbf{v} = 0$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

Answer 🕈

- 20. If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
- 21. If $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

Answer 🕈

22. If **u** and **v** are in V_3 , then $|\mathbf{u} \cdot \mathbf{v}| \leq |\mathbf{u}| |\mathbf{v}|$.

- 18. The plane through (2, 1, 0) and parallel to x + 4y 3z = 1
- 19. The plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1)

Answer 🕈

20. The plane through (1, 2, -2) that contains the line x = 2t, y = 3 - t, z = 1 + 3t

37. An ellipsoid is created by rotating the ellipse $4x^2 + y^2 = 16$ about the *x*-axis. Find an equellipsoid.

1.
$$f(x, y) = \ln (x + y + 1)$$

Answer \clubsuit

2.
$$f(x, y) = \sqrt{4 - x^2 - y^2} + \sqrt{1 - x^2}$$

3-4 Sketch the graph of the function.

3.
$$f(x, y) = 1 - y^2$$

4.
$$f(x, y) = x^2 + (y - 2)^2$$

5-6 Sketch several level curves of the function.

- 5. $f(x,y) = \sqrt{4x^2 + y^2}$ Answer \clubsuit
- 6. $f(x, y) = e^x + y$