Midterm II: Some problems for review

The exam is 2 hours long and taken at the Testing Center between March 9 and March 11. It is a closed book exam, covering Chapter 14 and Sections 15.1, 15.2, 15.3, 15.6. No calculators are allowed.

You should review methods to solve following types of problems. Also, take a look at the practice exam posted on Learning Suite. The quickest way to review is perhaps by reading examples given in lectures or the textbook. It is always a good idea to study for the exam with someone.

- Find limit of a function.
- Find linear approximation of a function around a given point.
- Find partial derivatives of a function.
- Write the total differential of a function.
- Write equation of a tangent plane to a surface at a given point.
- Find local/absolute min/max and saddle points of a function with or without constraints.
- Evaluate double/triple integral.
- Find volume/mass of a solid.

1) Compute $\iint_{D} \frac{y}{1+x^{2}} d A$ where D is the region bounded by $y=\sqrt{x}, y=0$ and $x=1$.
2) Compute $\iiint_{E} z d V$ where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.
3) Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ in the disk $x^{2}+y^{2} \leq 9$.
4) Write the equation of the tangent plane to the surface $z=3 x^{2}-y^{2}+2 x$ at point $(1,-2,1)$.
5) The rate of change of function $f(x, y)=x y+y^{2}$ in the direction of vector $\langle 0,1\rangle$ at point $(2,1)$ is
\qquad . At this point, the function increases the fastest in the direction of (unit) vector \qquad
6) A function $f(x, y)$ satisfying $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$ is said to be \qquad at $\left(x_{0}, y_{0}\right)$.
7) Where is the function $f(x, y)=\frac{e^{x}+e^{y}}{e^{x y}-1}$ continuous?
8) Along a level set of a function, the rate of change of the function is \qquad
9) The graph of $f(x, y)$ is \qquad of $g(x, y, z)=z-f(x, y)$.
10) Let $u=\ln \left(1+s e^{t}\right)$. Express the total differential $d u$ in terms of $d s$ and $d t$.
11) By Clairaut's Theorem, a smooth function $f(x, y)$ has at most \qquad different partial derivatives of third order.
12) Let $f(x, y)=a x(1+y)+b y$. If $\nabla f(1,1)=\langle 2,1\rangle$ then $a=$ \qquad and $b=$ \qquad
13) Find linear approximation of $f(x, y)=x^{3}-2 x y^{2}$ around $(1,1)$.
14) What is the difference between local minimum/maximum and saddle point? How do you distinguish them using Second Derivative test?
15) A function $f(x, y)$ has at most two critical points. True or false?
16) The absolute maximum over \mathbb{R}^{2} of a function $f(x, y)$, if exists, must be attained at a critical point. True or false?
17) If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ along every straight line through (a, b), then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=$ L. True or false?
18) $\lim _{(x, y) \rightarrow(1,1)} \frac{2 x y^{2}}{x^{2}+y^{2}}=$ \qquad (or write DNE if the limit doesn't exist.)
19) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{2}}=$ \qquad
20) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+y^{2}}=$ \qquad

Solution keys:

1) $\frac{1}{4} \ln 2$
2) $\frac{8 \pi}{3}$
3) $\min =-8, \max =9+12 \sqrt{2}$
4) $z=8 x+4 y+1$
5) 4 and $\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle$

6) continuous
7) Everywhere in \mathbb{R}^{2} except for the x-axis and the y-axis
8) zero
9) the 0-level set
10) $d u=\frac{e^{t}}{1+s e^{t}} d s+\frac{s e^{t}}{1+s e^{t}} d t$
11) 4
12) $a=1$ and $b=0$
13) $f(x, y) \approx-1+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-$ 1) $=x-4 y+2$
14)
15) False. Can you give an example?
16) True
17) False. Can you give an example?
18) 1
19) 0
20) DNE

