MATH 314, MIDTERM I, WINTER 2022

INSTRUCTOR: TUAN PHAM

Name	Section $\#$ (Sec. 4: 12 - 1PM, Sec. 9: 11 - 12PM)

Instructions:

- This is a closed-book exam, 2 hours long. No calculators are allowed.
- For Problems 1-12, use your pencil/pen to fill in the bubbles on this front page (see below).
- For Problems 13, 14, 15, make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Some formulae are provided below.
- Do not discuss the exam with anyone between Feb 2 and Feb 4.

1.	ABCDE
2.	(A) (B) (C) (D) (E)
3.	A B 📀 D E
4.	A B C D E
5.	A B C D E
6.	A B C D E
7.	A B C D E
8.	
9.	A B C D E
10.	A B C D E
11.	(A) (B) (C) (D) (E)
12.	A B C D E

Problem	Possible points	Earned points
1-12	24	
13	10	
14	10	
15	10	
Total	54	

$$\kappa = \frac{|r' \times r''|}{|r'|^3}, \quad \tau = \frac{(r' \times r'') \cdot r'''}{|r' \times r''|^2}, \quad N = \frac{T'}{|T'|}, \quad B = T \times N, \quad a_T = \frac{r' \cdot r''}{|r'|}, \quad a_N = \frac{|r' \times r''|}{|r'|}.$$

Problem 1. (2 points) Let i, j, k be the unit vector along the x, y, z axes, respectively, of a coordinate system. Which of the following is equal to $i \times k$?

$$\bigcirc B -j$$

C. 0

Problem 2. (2 points) Consider three points in the space A(1,0,1), B(2,1,0), C(-1,2,-1). Which of the following is equal to $(\overrightarrow{AB} \times \overrightarrow{BC}) \cdot \overrightarrow{AC}$

C. 8

D. 16

Problem 3. (2 points) To check if four points A, B, C, D lie on the same plane, which of the following methods is correct?

A. Check if $\overrightarrow{AB} \times \overrightarrow{CD} = 0$ B. Check if $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ C Check if $(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = 0$ D. Check if $(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot (\overrightarrow{BC} \times \overrightarrow{BD}) = 0$

Problem 4. (2 points) Which of the following is the correct parametrization of the line passing through point (1, 2, -1) and parallel to the line x = 2t + 1, y = t, z = t - 3.

A.
$$r(t) = \langle t+1, 2, -3t-1 \rangle$$

(B) $r(t) = \langle 2t+1, t+2, t-1 \rangle$
C. $r(t) = \langle t+2, 2t+1, -t+1 \rangle$
D. $r(t) = \langle 2t+1, t, t-3 \rangle$

Problem 5. (2 points) $z = x^2 - 4y^2$ is an equation of which of the following surfaces?

- A. ellipsoid
- B. cone
- C. elliptic paraboloid
- (D). hyperbolic paraboloid

Problem 6. (2 points) Consider a triangle ABC with vertices at A(1,1,0), B(2,0,0), C(2,2,-2). What is the angle of the triangle at vertex B?

A. 30°
B. 45° $\overrightarrow{BA} = \langle -|, |, 0 \rangle \longrightarrow |\overrightarrow{BA}| = \sqrt{2}$
 $\overrightarrow{BA} = \sqrt{2}$ $\cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{BO}}{|\overrightarrow{BA}| |\overrightarrow{BC}|} = \frac{2}{\sqrt{2} |\overrightarrow{B}|^2}$ $\overrightarrow{C} = 60^{\circ}$
D. 90° $\overrightarrow{BC} = \langle 0, 2, -2 \rangle \longrightarrow |\overrightarrow{BC}| = |\overrightarrow{B}|$ $\cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{BO}}{|\overrightarrow{BA}| |\overrightarrow{BC}|} = \frac{2}{\sqrt{2} |\overrightarrow{B}|^2}$ $\overrightarrow{BA} \cdot \overrightarrow{SC} = 2$ $\operatorname{Act} = \sqrt{2}$
 $\overrightarrow{BA} \cdot \overrightarrow{SC} = 2$ $\operatorname{Act} = \sqrt{2}$
 $\operatorname{Act} = \sqrt{2}$

Problem 7. (2 points) The volume of the parallelepiped formed by three vectors a, b, c is equal to

A. $a \cdot (b \times c)$ B. $|a \cdot (b \times c)|$ C. $|b \cdot (a \times c)|$ D. Only B and C are correct.

E. A, B, C are all correct.

Problem 8. (2 points) Choose the correct statement.

(A) The velocity is always tangent to the trajectory.

- B. The acceleration is always perpendicular to the velocity.
- C. The acceleration is always perpendicular to the trajectory.
- D. The acceleration is the derivative of the speed.

Problem 9. (2 points) Which of the following statements is true about a smooth curve on a plane?

- A. The curvature is always zero.
- (B) The torsion is always zero.
- C. The curvature is always nonzero.

D. The torsion is always nonzero.

Problem 10. (2 points) Let $r(t) = \langle t, e^t, 1 \rangle$. Which of the following is the correct value of the integral $\int_0^1 r(0) \cdot r'(t) dt$?

1

A. 0
B. 1
C. e
D
$$e-1$$

 $r(p) = \langle b_1 | , | \rangle$
 $r(o) - r'(l) = e^t$
 $r'(l) = \langle l, e^t, o \rangle$
 $\int e^t dt = e^t |_0^l = e^t - e^\circ = e^{-1}$

Problem 11. (2 points) Determine the limit

 $\begin{array}{c|c} (A) & \langle -1, \pi, 0 \rangle \\ B. & \langle 1, \pi, 0 \rangle \\ C. & \langle 0, 0, 0 \rangle \\ D. & \text{does not exist} \end{array}$

$$\lim_{t \to \pi} \frac{1}{t - \pi} \langle \sin t, t^2 - t\pi, 0 \rangle = \int_{i} \left(\frac{s_{\mu} t}{t - \pi}, \frac{t^2 - l_{\pi}}{t - \pi}, \frac{0}{t - \pi} \right)$$
$$= \int_{i} \left(\frac{s_{\mu} t}{t - \pi}, \frac{t}{t - \pi}, \frac{0}{t - \pi} \right)$$

Problem 12. (2 points) The intersection of the cylinder $x^2 + 4y^2 = 4$ and the ellipsoid $x^2 + 4y^2 + z^2 = 5$ above the xy-plane has a parametrization by L'Hexpital rule

A. $r(t) = \langle 2 \sin t, \cos t, -1 \rangle$ B. $r(t) = \langle \sin t, 2 \cos t, 1 \rangle$ C. $r(t) = \langle \cos t, 2 \sin t, \sqrt{5} \rangle$ $(D) r(t) = \langle 2 \cos t, \sin t, 1 \rangle$ $r(t) = \langle 2 \cos t, \sin t, 1 \rangle$ $r(t) = \langle 2$

Problem 13. (10 points) Find the equation of the line tangent to the curve $r(t) = \langle t, t-1, e^t \rangle$ at the point (0, -1, 1).

$$('l) = (1, 1, e^{t})$$
At the point $(o_{1}-1, 1)$, $t = 0$.

$$('o) = (1, 1, 1); duruhm writer g the curve at (o_{1}-1, 1).$$
Eq. of the tangent line:

$$(y = -1 + t)$$

$$y = -1 + t$$

$$z = 1 + t$$

Problem 14. (10 points) Find the equation of the plane that passes through point (2, -1, 1) and contains the line x = 1 - t, y = 2 - 3t, z = 1 + t.

Problem 15. (10 points) Find the torsion of the helix $r(t) = \langle \cos t, \sin t, at \rangle$, where a is a constant.

$$r'(t) = (-snt, cnt, a)$$

$$r''(t) = (-cot, -snt, 0)$$

$$r'''(t) = (sint, -cot, 0)$$

$$r'xr'' = (asnt) - acot, 1)$$

$$(r'xr') \cdot r'' = asn^{2}t + acot + 0 = a$$

$$|r'| = (sn^{2}t + cot + a^{2}) = \sqrt{l + a^{2}}$$

$$\overline{l} = \frac{(r' \times r'') \cdot r''}{(r')^2} = \frac{a}{1+q^2}$$