MATH 314, MIDTERM I, WINTER 2022

INSTRUCTOR: TUAN PHAM

Name	Section \# (Sec. 4: 12-1PM, Sec. 9: 11-12PM)

Instructions:

- This is a closed-book exam, 2 hours long. No calculators are allowed.
- For Problems 1-12, use your pencil/pen to fill in the bubbles on this front page (see below).
- For Problems 13, 14, 15, make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Some formulae are provided below.
- Do not discuss the exam with anyone between Feb 2 and Feb 4.

1.	(A) (B) (C) (D) (E)
2.	(A) (B) (C) (D) (E)
3.	(A) (B) (C) (D) (E)
4.	(A) (B) (C) (D) (E)
5.	(A) (B) (C) (1) (E)
6.	(A) (B) (C) (D) (E)
7.	(A) (B) (C) (D) (E)
8.	(A) (B) (C) (D) (E)
9.	(A) (B) (C) (D) (E)
10.	(A) (B) (C) (D) (E)
11.	(A) (B) (C) (D) (E)
12.	(A) (B) (C) (D) (E)

Problem	Possible points	Earned points
$1-12$	24	
13	10	
14	10	
15	10	
Total	54	

$\kappa=\frac{\left|r^{\prime} \times r^{\prime \prime}\right|}{\left|r^{\prime}\right|^{3}}, \quad \tau=\frac{\left(r^{\prime} \times r^{\prime \prime}\right) \cdot r^{\prime \prime \prime}}{\left|r^{\prime} \times r^{\prime \prime}\right|^{2}}, \quad N=\frac{T^{\prime}}{\left|T^{\prime}\right|}, \quad B=T \times N, \quad a_{T}=\frac{r^{\prime} \cdot r^{\prime \prime}}{\left|r^{\prime}\right|}, \quad a_{N}=\frac{\left|r^{\prime} \times r^{\prime \prime}\right|}{\left|r^{\prime}\right|}$.

Problem 1. (2 points) Let i, j, k be the unit vector along the x, y, z axes, respectively, of a coordinate system. Which of the following is equal to $i \times k$?
A. j
(B) $-j$

C. 0

Problem 2. (2 points) Consider three points in the space $A(1,0,1), B(2,1,0), C(-1,2,-1)$. Which of the following is equal to $(\overrightarrow{A B} \times \overrightarrow{B C}) \cdot \overrightarrow{A C}$
(A) 0
B. 1
$\overrightarrow{A B}=\langle 1,1,-1\rangle$
$\overrightarrow{B C}=\langle-3,1,-1\rangle$

$\overrightarrow{A C}=\langle-2,2,-2\rangle$
C. 8
D. 16

Problem 3. (2 points) To check if four points A, B, C, D lie on the same plane, which of the following methods is correct?
A. Check if $\overrightarrow{A B} \times \overrightarrow{C D}=0$
B. Check if $\overrightarrow{A B} \cdot \overrightarrow{C D}=0$
(C) Check if $(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}=0$
D. Check if $(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot(\overrightarrow{B C} \times \overrightarrow{B D})=0$

Problem 4. (2 points) Which of the following is the correct parametrization of the line passing through point $(1,2,-1)$ and parallel to the line $x=2 t+1, y=t, z=t-3$.
A. $r(t)=\langle t+1,2,-3 t-1\rangle$
(B) $r(t)=\langle 2 t+1, t+2, t-1\rangle$
C. $r(t)=\langle t+2,2 t+1,-t+1\rangle$
D. $r(t)=\langle 2 t+1, t, t-3\rangle$

Problem 5. (2 points) $z=x^{2}-4 y^{2}$ is an equation of which of the following surfaces?
A. ellipsoid
B. cone
C. elliptic paraboloid
(D). hyperbolic paraboloid

Problem 6. (2 points) Consider a triangle $A B C$ with vertices at $A(1,1,0), B(2,0,0), C(2,2,-2)$. What is the angle of the triangle at vertex B ?
A. 30°
B. 45°
C. 60°
$\overrightarrow{B A}=\langle-1,1,0\rangle \rightarrow|\overrightarrow{B A}|=\sqrt{2}$
D. 90°

$$
\overrightarrow{B C}=\langle 0,2,-2\rangle \leadsto|\overrightarrow{b C}|=\sqrt{8}
$$

$$
\cos \theta=\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{|\overrightarrow{B A}||\overrightarrow{B C}|}=\frac{2}{\sqrt{2} \sqrt{8}}=\frac{1}{2}
$$

$$
\overrightarrow{B A} \cdot \overrightarrow{B C}=2
$$

$$
\sim \theta \theta=60^{\circ}
$$

Problem 7. (2 points) The volume of the parallelepiped formed by three vectors a, b, c is equal to
A. $a \cdot(b \times c)$
B. $|a \cdot(b \times c)|$
C. $|b \cdot(a \times c)|$
(D. Only B and C are correct.
E. A, B, C are all correct.

Problem 8. (2 points) Choose the correct statement.
A. The velocity is always tangent to the trajectory.
B. The acceleration is always perpendicular to the velocity.
C. The acceleration is always perpendicular to the trajectory.
D. The acceleration is the derivative of the speed.

Problem 9. (2 points) Which of the following statements is true about a smooth curve on a plane?
A. The curvature is always zero.
B. The torsion is always zero.
C. The curvature is always nonzero.
D. The torsion is always nonzero.

Problem 10. (2 points) Let $r(t)=\left\langle t, e^{t}, 1\right\rangle$. Which of the following is the correct value of the integral $\int_{0}^{1} r(0) \cdot r^{\prime}(t) d t$?
A. 0
B. 1
C. e
(D.) $e-1$

$$
\left.\begin{array}{rl}
r(0)= & \langle 0,1,1\rangle \\
r^{\prime}(t)= & \left\langle 1, e^{t}, 0\right\rangle
\end{array}\right\} r(0)+r^{\prime}(t)=e^{t} \quad \begin{aligned}
& 1 \\
& e_{0}^{t} d t=\left.e^{t}\right|_{0} ^{1}=e^{1}-e^{0}=e-1
\end{aligned}
$$

Problem 11. (2 points) Determine the limit

$$
\lim _{t \rightarrow \pi} \frac{1}{t-\pi}\left\langle\sin t, t^{2}-t \pi, 0\right\rangle=\lim \left\langle\frac{\sin t}{t-\pi}, \frac{t^{2}-l \pi}{t-\pi}, \frac{0}{t-\pi}\right\rangle
$$

(A.) $\langle-1, \pi, 0\rangle$
B. $\langle 1, \pi, 0\rangle$
C. $\langle 0,0,0\rangle$
D. does not exist

$$
=\lim _{t \rightarrow \pi}\left\langle\frac{\sin t}{t-\pi}, \quad t, 0\right.
$$

Problem 12. (2 points) The intersection of the cylinder $x^{2}+4 y^{2}=4$ and the ellipsoid $x^{2}+4 y^{2}+z^{2}=5$ above the $x y$-plane has a parametrization
A. $r(t)=\langle 2 \sin t, \cos t,-1\rangle$
B. $r(t)=\langle\sin t, 2 \cos t, 1\rangle$
C. $r(t)=\langle\cos t, 2 \sin t, \sqrt{5}\rangle$
(1). $r(t)=\langle 2 \cos t, \sin t, 1\rangle$

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + 4 y ^ { 2 } = 4 } \\
{ x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 5 }
\end{array} \rightarrow \left\{\begin{array}{l}
x^{2}+4 y^{2}=4 \\
z^{2}=1 \leadsto z=1 \\
(\text { because } z>0)
\end{array}\right.\right.
$$

$$
\left(\frac{x}{2}\right)^{2}+y^{2}=1 \rightarrow\left\{\begin{array} { l }
{ \frac { x } { 2 } = \operatorname { c o s } t } \\
{ y = \operatorname { s i n } t }
\end{array} \leadsto \left\{\begin{array}{l}
x=2 \cos t \\
y=\sin t
\end{array}\right.\right.
$$

Problem 13. (10 points) Find the equation of the line tangent to the curve $r(t)=\left\langle t, t-1, e^{t}\right\rangle$ at the point $(0,-1,1)$.

$$
r^{\prime}(t)=\left\langle 1,1, e^{t}\right\rangle
$$

At the point $(0,-1,1), t=0$.
$r^{\prime}(0)=\langle 1,1,1\rangle$: direction valor of the curve at $(0,-1,1)$.
Eq. of the tangent line:

$$
\left\{\begin{array}{l}
x=t \\
y=-1+t \\
z=1+t
\end{array}\right.
$$

Problem 14. (10 points) Find the equation of the plane that passes through point $(2,-1,1)$ and contains the line $x=1-t, y=2-3 t, z=1+t$.
$M(2,-1,1)$

A

$$
\begin{aligned}
& \overrightarrow{A M}=\langle 1,-3,0\rangle \\
& \overrightarrow{A B}=\langle-1,-3,1\rangle
\end{aligned}
$$

normal rector of the plane:

$$
\overrightarrow{A M} \times \overrightarrow{A B}=\langle-3,-1,-6\rangle
$$

Eq- of the plane:

$$
\begin{array}{ll}
& -3(x-1)+(-1)(y-2)+(-6)(z-1)=0 \\
\leadsto & -3 x-y-6 z+3+2+6=0 \\
\leadsto & 3 x+y+6 z=11
\end{array}
$$

Problem 15. (10 points) Find the torsion of the helix $r(t)=\langle\cos t, \sin t, a t\rangle$, where a is a constant.

$$
\begin{gathered}
r^{\prime}(t)=\langle-\sin t, \cos t, a\rangle \\
r^{\prime \prime}(t)=\langle-\cos t,-\sin t, 0\rangle \\
r^{\prime \prime \prime}(t)=\langle\sin t,-\cos t, 0\rangle \\
r^{\prime} \times r^{\prime \prime}=\langle a \sin t,-a \cos t, 1\rangle \\
\left(r^{\prime} \times r^{\prime \prime}\right) \cdot r^{\prime \prime \prime}=a \sin ^{2} t+a \cos ^{2} t+0=a \\
\left|r^{\prime}\right|=\sqrt{\sin ^{2} t+\cos ^{2} t+a^{2}}=\sqrt{1+a^{2}}
\end{gathered}
$$

Torsion

$$
z=\frac{\left(r^{\prime} \times r^{\prime \prime}\right) \cdot r^{\prime \prime \prime}}{\left|r^{\prime}\right|^{2}}=\frac{a}{1+q^{2}}
$$

