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NSE in 3D

Ou—Au+u-Vu+Vp=Ff in R3x(0,00),

(NSE) :

Translation symmetry :

Scaling symmetry :

Tuan Pham (Oregon State University)

u(x,t)

Ll

divu=0 in R3x(0,00),
u(-,0)=up in RS

—  u(x — xp, t)

ux(x, t) = Au(Ax, \t)

pa(x, t) = A2p(Ax, A°t)
uxo(x) = Aup(Ax)

fu(x, t) = A3F(Ax, A°t)
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Main results

Ou—Au = V=A(v?) in R3x(0,00),
2y

(cNSE):{ w0 = 2 0 R3

Dascaliuc, Orum, Pham (2019)

@ For any v € R, (cNSE) has a solution in L5(R® x (0, T)) for some
0< T <o0.
@ If 0 < < 1 then (cNSE) has a unique solution in L3(R3 x (0, 00)).
o If v =1 then u(x, t) = up(x) is the unique solution in
L5(R3 x (0, T)) for every T < oo.
o If v > %eS/3 ~2 64.76 then the solution blows up in finite time.
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Diffusion equation — Probabilistic representation

In RY x (0, 00), consider the initial-value problem

8tu—%Au = 0,
u(x,0) = wup(x).

Classical solution:

u(x, t) = /Rd Wl)d/z exp (—'y;tx|2> uo(y)dy.

g

d(y—x,t)
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Diffusion equation — Probabilistic representation

In RY x (0, 00), consider the initial-value problem

8tu—%Au = 0,
u(x,0) = wup(x).

Classical solution:

u(x, t) = /Rd Wl)d/z exp (— Y ;tx|2> uo(y)dy.

g

d(y—x,t)

Observe: ®(- — x, t) is the p.d.f of an N(x, t Iy)-random variable in RY,
e.g. Brownian motion By.

u(x, t) = E[uo(B{)]-

Tuan Pham (Oregon State University) February 19, 2020 4/28
Y /



Diffusion equation — Probabilistic representation

,t ae tme o so.=f
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Reaction-Diffusion equation — Probabilistic representation

du—310u = —K(x)u,
u(x,0) = up(x).

Feynman-Kac formula (1940s):

u(x,t) =E [uo(stx) exp <— /Ot K(Bsx)ds)] .

The problem can be formulated and generalized (with drift term Vu and
forcing f) by It6 calculus (1950s).
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KPP-Fisher equation

In R x (0,00), consider the equation (Kolmogorov-Petrovskii-Piskunov
(KPP), Fisher, 1937):

Up — 3l = U —u,
u(x,0) = up(x).

With ¥ = e~ !,

u(x,t) = /R\I!(x —y, t)uo(y)dy + /Ot/R\U(X — y,s)u*(y, t — s)dyds.

Noting that W is a p.d.f on R x (0,00), McKean (1975) gave a
probabilistic description of this equation by branching process.
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KPP-Fisher equation

T ~ Exp(1): holding time (the clock).
u(x,t) =Eug(Bf)L7se] + E [P (BF. t — T)l1<
In other words, u(x,t) = E[X(x, t)] where

[ w(BY) if T>t,
X(x, t) = { XOBx, t - T)X@(Bx,t —T) if T<t.

Here X(1) and X are i.i.d copies of X and are independent of T.
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KPP-Fisher equation — Branching process

T ?R
A

X(x; ) = uo(B2 To— Tl)UO(B:ETO—TI)UO(B:ETO)'
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Diffusion-reaction equation — Fourier domain — Ex. 1

The heat operator 9; — A naturally induces a clock in the Fourier domain.
For example,

Ur — U = bu,  u(x,0) = up(x).

In Fourier domain,

(e, t) = e € (&) + / " Chi(e, t — s)ds.

0

Put x = €20. Then

x(§ 1) = et£2><o(£)+/0 e

2 b
¢ ?X(fa t—s)ds.
p.d.f
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Diffusion-reaction equation — Fourier domain — Ex. 1

x(&,t) = E[X(¢, 1)]
where

xo(§) if T >t
X(&1) = { LX(Et-T) if T<t

A 4

Ny
X(, t) = (;) xo0(§), Ne=inf{n:To+T1+..4+T,>t}
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Diffusion-reaction equation — Fourier domain — Ex. 2

Tuan Pham (Oregon State University) February 19, 2020 12/28



Diffusion-reaction equation — Fourier domain — Ex. 2

Uy — Uxx = COSX) u(x 0) — Uo(X).
(€, t) = do(€)e ™ + / 265 acg gzt—s) n u(€+§;t_s))ds
S
Lf-tl---___}-);d E"f(g)
P O k8- C2TY)
| &) if T>t,
X ):{ ng(W,t{OT) if T<t.

Pe(W =¢—1)=Pe(W =¢+1) =1/2.
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Navier-Stokes equations

Ou—Au+u-Vu+Vp=0 in RYx (0,00),
(NSE) : divu=0 in RY x(0,00),
u(,0) =up in RY.

Integro-differential equation:

t
u(x, t) = ePtug — / e®*Pdiv{u(t — s) ® u(t — s)]ds.
0
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Navier-Stokes equations

Ou—Au+u-Vu+Vp=0 in RYx (0,00),
(NSE) : divu=0 in RY x(0,00),
u(,0) =up in RY.

Integro-differential equation:
t
u(x, t) = ePtug — / e®*Pdiv{u(t — s) ® u(t — s)]ds.
0
In Fourier domain:

8(¢. 1) = e Pt 6 (€)oo / ~lels|¢) / G0, — $)Oe(E — .t — s)dnds

where a ©O¢ b = —i(e¢ - b)(meLa).
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Fourier-transformed Navier-Stokes equations (FNS)

Normalization to (FNS): LJS 1997, Bhattacharya et al 2003.
M6 = e ¥ xo(¢)
t olel2
o [ [t = 9) 0 x(6 = 0.t = ) HOri)dnos

where x = cpii/h and H(n|¢) = %(é—)n)

h: majorizing kernel, i.e. hx h = |¢|h.
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Cascade structure of FNS

Wi

§
To ~ Exp([¢[?)
Wy=¢§-Wy

tl 7~ B

—

—

TQ ~ EXp(|W2|2)

X0

Define a stochastic multiplicative functional recursively as

Xpns (€, t) = { ))((%E)f)

if To>t,

FNS(W17 t— T0)®§X1(7213]S(£ — Wl, t — To) if To <t.

Tuan Pham (Oregon State University)
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An example of Xpns

Consider the following event:

¢ Wi

Wl 1 W1 2

W,

On this event,

Xens (€5 ) = (xo(Wa1) ©Ow, xo(Wi2)) ©¢ xo( Wa).

Three ingredients: clocks, branching process, product.
Cascade structure = clocks + branching process.
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Stochastic explosion

n

Sn = min ZTUU, S= Ii_}m Sh=supS,

= n
|v|=n =0 neN

Explosion event: {S < oo}.
Non-explosion event : {S = oo}.

Tuan Pham (Oregon State University) February 19, 2020 17 /28



Examples of non-explosion

Ur — U = 1> — 1, 1(x,0) = up(x).
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Examples of non-explosion
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Examples of non-explosion

U — Usxx = (cosx)u, u(x,0) = up(x).

§

L e a)
J7.~ B lg)

f4l- - —---

f— 1
|

Pe(W=¢—1)=Pe(W=¢+1)=1/2.
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Examples of non-explosion

U — Usxx = (cosx)u, u(x,0) = up(x).

§

J- e (5)
J7.~ B lg)

falo - oo

A I

Pe(W=¢—1)=Pe(W=¢+1)=1/2.

o0 o0 Ty|n o0 7_—Vk 1 oo _
DRI SIS SR TNES o SR
n=1 |Wu\n’ 3 3
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Cheap Navier-Stokes equation

[ Owu—ADu = V=AW?) in R x(0,00),
(CNSE)'{ u(,0) = ~h/q in R

With x = cpii/h, we have

X 1) = ety
t 2
+ [ R [ e = 9~ 0.t = )i dnds
= EIX( 1)
where

X(& 1) = { XMWy, t — To)X@(E— Wy, t — Ty) if To<t.
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Stochastic explosion

Branching process may never stop, potentially making Xgys not
well-defined.

@ Property of cascade structure, not of product.
@ Depending on the majorizing kernel h.

o 3D self-similar cascade hgilog(£) = C|€|72: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)

3D Bessel cascade hy(¢) = C|¢| e ¢l: non-explosive a.s.

(Orum, Pham 2019)
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Cascade solutions

When stochastic explosion happens, how can we define a stochastic
cascade solution and is it unique?
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When stochastic explosion happens, how can we define a stochastic
cascade solution and is it unique?

Introducing a ground state Xo = Xo(&, t):

v if To>t,
X, (&, t) = !
(&1 { Xgl—)l(Wl’ t= TO)X£2—)1(§ - Wi, t—=Tp) if To<t
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Cascade solutions

When stochastic explosion happens, how can we define a stochastic
cascade solution and is it unique?

Introducing a ground state Xo = Xo(&, t):

v if To>t,
X, (&, t) = !
(&1 { Xgl—)l(Wl’ t= TO)X$;2—)1(§ - Wi, t—=Tp) if To<t

o If y=1and Xp =1 then X, =1 for all n. Thus, x =IlimEX, =1.
o If y =1 and Xg =0 then y = limEX, = P(5¢ > t).

X(€7 t) = Z ,ynpn(gj t)
n=1

pn(&, t) = P(S¢ > t, exactly n branches cross).
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Cheap NSE in 3D

Bessel majorizing kernel: h = h,(&) = %egfl.

Ou—Au = V=A(?) in R3x(0,00),
2y

(cNSE):{ u(.0) = 2 o R3

Dascaliuc, Orum, Pham (2019)

If 0 <~ < 1 then (cNSE) has a unique solution in L5(R3 x (0, 0)). If
v > %e8/3 ~ 64.76 then the solution blows up in finite time.
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Cheap NSE in 3D when v < 1

pn(&, t) = P(S¢ > t, exactly n branches cross).
By conditioning on the first time of branching, we get

t ) n—1
pn(&,t) = /O |&[2e*Kl /R3 > pk(n,t = 8)pn—k(€ —n, t — s)H(n|¢)dnds
k=1

By induction, one can prove

p(€,t) < ONTLC e IEVE

where
0 0 =el/4 \ =234

e (C,) is the Catalan sequence

G=1
n—1
Co=> GGk
k=1
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Cheap NSE in 3D when v < 1

Forany 0 < x < 1,
pn(§,t) < (9/\”‘1C,,e—‘5|\/?)” < (4N)FneRIEVE

If v < 1, choose x small such that 4" A"y < 1.

x(&t) =P(S > t) ZV Pa(€.1) S 3 (4505 "e HIEIVE,
—1 H,—/

<1
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Cheap NSE in 3D when 7 is large

an(t) = inf  pn(&.t)

1/3<|¢I<1

t n
an(t) > oz/ e )Y " q(s)qnk(s)ds
0 k=1

By induction,
pn(&,t) > qn(t) > Qg lemnt,

For large ~ and for some t,

X&) =) "pa(&,t) 2 ) (yate ™) = .
; ; ——

>1
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Thank You!
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