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NSE, mild solutions

(NSE) :


∂tu −∆u + u · ∇u +∇p = 0 in Rd × (0,∞),

div u = 0 in Rd × (0,∞),
u(·, 0) = u0 in Rd .

Integro-differential equation:

u(x , t) = e∆tu0 −
∫ t

0
e∆sPdiv[u(t − s)⊗ u(t − s)]ds.

Mild solutions – obtained by Picard’s iteration:

v0 ≡ 0

vn = U + B(vn−1, vn−1)

u = lim vn
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NSE, mild solutions

X Global existence and uniqueness in L∞t L2
x for d = 2: Leray (1933).

X Local existence and uniqueness in subcritical spaces: Leray (‘34),
Kato (‘84),. . .

X Global existence in critical spaces for small initial data: Kato (‘84),
Koch-Tataru (2001),. . .

? Global existence for arbitrarily large initial data.
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NSE, weak solutions

Weak formulation = diff. eq. in distribution sense + energy inequality.

Energy solutions: Leray ‘34, Hopf ‘51∫
Rd

|u(x , t)|2

2
dx +

∫ t

0

∫
Rd

|∇u|2dxds ≤
∫
Rd

|u0(x)|2

2
dx

Local energy solutions: Scheffer ‘77, CKN ‘82, L-R 2002,. . .

∞∫
0

∫
Rd

|∇u|2φdxdt ≤
∞∫

0

∫
Rd

[
|u|2

2
(∂tφ+ ∆φ) +

(
|u|2

2
+ p

)
u∇φ

]
dxdt

X Global existence ? Uniqueness, smoothness
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NSE, weak solutions

Partial regularity:
Let u0 ∈ L2. How big is the set of singular points S ⊂ Rd × (0,∞)?

H1(Rd) ↪→ L
2d
d−2 (Rd)

d = 2: S = ∅ (Leray ‘33).

d = 3: H1
par(S) = 0 (CKN ‘82).

d = 4: H2
par(S) = 0 (Dong-Gu 2014, Wang-Wu ‘14).

d = 5 (stationary): S = ∅ (Struwe 1995).

d = 6 (stationary): H2(S) = 0 (Dong-Strain 2012).
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Fourier transformed Navier-Stokes (FNS)

û(ξ, t) = e−|ξ|
2t û0(ξ)+c0

∫ t

0
e−|ξ|

2s |ξ|
∫
Rd

û(η, t − s)�ξû(ξ − η, t − s)dηds

where a�ξ b = −i(eξ · b)(πξ⊥a).

Normalization to (FNS): LJS ‘97, Bhattacharya et al (2003)

χ(ξ, t) = e−t|ξ|
2
χ0(ξ)

+

∫ t

0
e−s|ξ|

2 |ξ|2
∫
Rd

χ(η, t − s)�ξ χ(ξ − η, t − s)H(η|ξ)dηds

where χ = c0û/h and H(η|ξ) = h(η)h(ξ−η)
|ξ|h(ξ) .

h: majorizing kernel, i.e. h ∗ h = |ξ|h.
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Cascade structure of FNS

Define a stochastic multiplicative functional recursively as

XFNS(ξ, t) =

{
χ0(ξ) if T0 > t,

X
(1)
FNS(W1, t − T0)�ξX

(2)
FNS(ξ −W1, t − T0) if T0 ≤ t.

Tuan Pham (Oregon State University) October 14, 2019 7 / 21



7/21

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as

XFNS(ξ, t) =

{
χ0(ξ) if T0 > t,

X
(1)
FNS(W1, t − T0)�ξX

(2)
FNS(ξ −W1, t − T0) if T0 ≤ t.

Tuan Pham (Oregon State University) October 14, 2019 7 / 21



8/21

Closed form of XFNS

Consider the following event:

On this event,

XFNS(ξ, t) = (χ0(W11)�W1 χ0(W12))�ξ χ0(W2).

Three ingredients: clocks, branching process, product.
Cascade structure = clocks + branching process.
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FNS: mild solutions, cascade solutions

χ(ξ, t) = e−t|ξ|
2
χ0(ξ)

+

∫ t

0
e−s|ξ|

2 |ξ|2
∫
Rd

χ(η, t − s)�ξ χ(ξ − η, t − s)H(η|ξ)dηds

Mild solution:

γ0 ≡ 0

γn = e−t|ξ|
2
χ0 + B̄(γn−1, γn−1)

χ = lim γn

Cascade solution (∼ LJS 1997):

χ(ξ, t) = Eξ,tXFNS

Two issues: (1) stochastic explosion and (2) existence of expectation.
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Explosion

Branching process may never stop, potentially making XFNS not
well-defined.

Property of cascade structure, not of product.

Depending only on the majorizing kernel h and the clocks.

3D self-similar cascade hdilog(ξ) = C |ξ|−2: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)

3D Bessel cascade hb(ξ) = C |ξ|−1e−|ξ|: no-explosion a.s.
(Orum, Pham 2019)

We bypass the explosion problem by defining instead

χ(ξ, t) = Eξ,t [XFNS1S>t ],

where S is the shortest path.
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Existence of expectation

It may happen that Eξ,t [|XFNS|1S>t ] =∞.

XFNS(ξ, t)1S>t =
⊙

s∈V0(ξ,t)

χ0(Ws) (finite product)

This issue depends on both cascade structure and the product.

Tuan Pham (Oregon State University) October 14, 2019 11 / 21
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Existence of expectation

LJS ‘97, Bhattacharya et al 2003: |χ0| ≤ 1 leads to

1 Global existence

2 Uniqueness in the class {χ : |χ| ≤ 1 a.e. (ξ, t)}
3 Cascade solution agrees with mild solution.

Question: can smallness of χ0 in a global sense guarantee existence of
expectation?

‖u0‖Ḣd/2−1 = Cd

{∫
Rd

|ξ|d−2h2(ξ)|χ0(ξ)|2dξ
}1/2

.

An iteration method was used by LJS (1997) to show uniqueness; by
Bhattacharya et al (2003) to show cascade-mild agreement; by Dascaliuc
et al (2018) to show nonuniqueness for α-Riccati equation.
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Iteration process

Chain from initial condition to solution – Introduce a ground state.

XFNS,0(ξ, t) ≡ 0,

XFNS,n(ξ, t) =

{
χ0(ξ) if T0 > t,

X
(1)
FNS,n−1(W1, ...)�ξ X

(2)
FNS,n−1(ξ −W1, ...) if T0 ≤ t.

Ignore the product:

X0(ξ, t) ≡ 0,

Xn(ξ, t) =

{
|χ0(ξ)| if T0 > t,

X
(1)
n−1(W1, t − T0)X

(2)
n−1(ξ −W1, t − T0) if T0 ≤ t.

Domination principle: |XFNS,n| ≤ Xn.
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Majorizing NSE equation

Xn corresponds to the following scalar equation:

(mNSE) :

{
∂tu −∆u =

√
−∆(u2) in Rd × (0,∞),

u(·, 0) = u0 in Rd .

called majorizing NSE.

It is called “cheap NSE” by Montgomery-Smith (2001).
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Iteration process

Note that XFNS,n(ξ, t)→ XFNS(ξ, t)1S>t a.s.
Put φn(ξ, t) = Eξ,tXn. By Fatou’s lemma and domination principle,

φ(ξ, t) := Eξ,t [|XFNS|1S>t ] ≤ lim inf Eξ,t |XFNS,n|
≤ lim inf Eξ,tXn

= lim inf φn(ξ, t).

Admissible functional

A map NT :MT → [0,∞] is said to be an admissible functional if it has
the following properties:

1 If NT [f ] <∞ then |f (ξ, t)| <∞ for a.e. (ξ, t) ∈ Rd × (0,T ).

2 If f , fn ∈MT and f ≤ lim inf fn a.e. then NT [f ] ≤ lim inf NT [fn].

MT : space of all Borel measurable functions from Rd × (0,T ) to [0,∞].
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Admissible functionals

Example of admissible functionals:

NT [f ] = ‖f ρ‖LrtLqξ =
∥∥∥‖f (·, t)ρ(·, t)‖Lqξ(Rd )

∥∥∥
Lrt (0,T )

where 0 < r , q ≤ ∞ and ρ : Rd × (0,T )→ [0,∞] is a measurable function
which vanishes only on a set of measure zero.
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Key estimates

Recall:

φn(ξ, t) = Eξ,tXn,

φ(ξ, t) = Eξ,t [|XFNS|1S>t ].

If NT [φn] ≤ M <∞ for all n then

By (2), NT [φ] ≤ lim inf NT [φn] ≤ M.

By (1), φ(ξ, t) <∞ a.e. (ξ, t) ∈ Rd × (0,T ).
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What can we choose for NT ?

φn(ξ, t)

= Eξ,t [Xn1T0>t ] + Eξ,t [Xn1T0≤t ]

= e−t|ξ|
2 |χ0|

+

∫ t

0
|ξ|2e−s|ξ|2

∫
Rd

φn−1(η, t − s)φn−1(ξ − η, t − s)H(η|ξ)dηds.

Therefore,
φn = F1[|χ0|] + F2[φn−1, φn−1].

This is a Picard iteration.
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Kato’s settings

Problem:
What can we choose for E and ET such that if |χ0| is suffi-

ciently small in E then φn is bounded in ET ?

We call (E , ET ) a Kato’s setting if

F1 is bounded linear from E to ET ,

F2 is bounded bilinear from ET × ET to ET .

Lemarie-Rieusset calls E an adapted value space, ET an admissible path
space.

‖φn‖ET ≤ κ‖|χ0|‖E + γ‖φn−1‖2
ET .
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Smallness of χ0 in integral sense

Theorem (P. - Thomann 2019)

Let (E , ET ) be a Kato’s setting such that ‖ · ‖ET is an admissible
functional. If |χ0| is sufficiently small in E then φ(ξ, t) = Eξ,t [|XFNS|1S>t ]
is finite for a.e. (ξ, t) ∈ Rd × (0,T ).

Choices of E include

1 From smallness of u0 in Ḣd/2−1:

‖χ0‖E =

{∫
Rd

|ξ|d−2h2(ξ)|χ0(ξ)|2dξ
}1/2

.

2 From smallness of u0 in Lin-Lei’s space (2011):

‖χ0‖E =

∫
Rd

|ξ|−1h(ξ)|χ0(ξ)|dξ.
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functional. If |χ0| is sufficiently small in E then φ(ξ, t) = Eξ,t [|XFNS|1S>t ]
is finite for a.e. (ξ, t) ∈ Rd × (0,T ).
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|ξ|−1h(ξ)|χ0(ξ)|dξ.
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Thank You!
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