Worksheet

11/28/2018
You may use calculator to compute RREF only. For Problem 1, you should do row reduction by hand.

1. Find the inverse of matrix using row reduction method.

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
-2 & 1 & -17 \\
3 & 1 & -1
\end{array}\right]
$$

2. Find all values c such that the following matrix is invertible

$$
\left[\begin{array}{lll}
1 & c & 0 \\
c & 1 & 0 \\
0 & 1 & c
\end{array}\right]
$$

3. Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ where

$$
\begin{aligned}
& v_{1}=(1,1,1) \\
& v_{2}=(1,2,3) \\
& v_{3}=(1,1,2)
\end{aligned}
$$

(a) Check if S is a basis of \mathbb{R}^{3}.
(b) Let $v=(2,1,3)$. Find the coordinate of v in basis S.
4. Let v_{1}, v_{2}, v_{3} be given as in the previous problem. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear map satisfying:

$$
\begin{aligned}
f\left(v_{1}\right) & =(1,3) \\
f\left(v_{2}\right) & =(-1,0) \\
f\left(v_{3}\right) & =(0,5)
\end{aligned}
$$

(a) Find the matrices representing f in the standard basis.
(b) Determine the kernel of f, a basis and the dimension.
(c) Determine the range of f, a basis and the dimension.
5. Diagonalize the matrix

$$
\left[\begin{array}{cc}
-2 & 12 \\
-1 & 5
\end{array}\right]
$$

6. Solve the following system of differential equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-2 x_{1}+12 x_{2} \\
x_{2}^{\prime}=-x_{1}+5 x_{2}
\end{array}\right.
$$

with initial conditions $x_{1}(0)=1$ and $x_{2}(0)=-1$.

