Worksheet 11/30/2018

You may use calculator to compute RREF **only**.

1. Let

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

- (a) Find A^{-1} (if exists).
- (b) Express A as a product of elementary matrices.

2. Find the following determinant by row reduction method. Show each row operation step.

5	-7	2	$2 \mid$
0	3	0	-4
$\left -5\right $	-8	1	3
0	5	0	-6

3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^3$ be linear maps such that

$$\begin{array}{ll} f(1,\,2) = (1,\,4) & g(5,\,1) = (-1,\,1,\,0) \\ f(2,\,3) = (-1,\,3) & g(4,\,1) = (2,\,3,\,-1) \end{array}$$

- (a) Find the matrix representing f in standard basis. What is f(12, 7)?
- (b) Find the matrix representing g in standard basis.
- (c) Find the matrix representing $g \circ f$ in standard basis.

4. Let V be a subspace of \mathbb{R}^5 spanned by the vectors

$$v_1 = (1, 1, 1, 4, 5)$$

$$v_2 = (1, 2, 3, 2, 1)$$

$$v_3 = (-1, -3, -5, 0, 3)$$

- (a) Find a basis of V. What is the dimension of V?
- (b) Supplement more vectors to this basis to obtain a basis of \mathbb{R}^5 .

5. Determine all values of c such that the map $f : \mathbb{R}^3 \to \mathbb{R}^2$,

$$f(x, y, z) = (x + y + cz, cx + cy + z)$$

is surjective.