Worksheet

11/30/2018
You may use calculator to compute RREF only.

1. Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]
$$

(a) Find A^{-1} (if exists).
(b) Express A as a product of elementary matrices.
2. Find the following determinant by row reduction method. Show each row operation step.
$\left|\begin{array}{cccc}5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 1 & 3 \\ 0 & 5 & 0 & -6\end{array}\right|$
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear maps such that

$$
\begin{array}{cl}
f(1,2)=(1,4) & g(5,1)=(-1,1,0) \\
f(2,3)=(-1,3) & g(4,1)=(2,3,-1)
\end{array}
$$

(a) Find the matrix representing f in standard basis. What is $f(12,7)$?
(b) Find the matrix representing g in standard basis.
(c) Find the matrix representing $g \circ f$ in standard basis.
4. Let V be a subspace of \mathbb{R}^{5} spanned by the vectors

$$
\begin{aligned}
& v_{1}=(1,1,1,4,5) \\
& v_{2}=(1,2,3,2,1) \\
& v_{3}=(-1,-3,-5,0,3)
\end{aligned}
$$

(a) Find a basis of V. What is the dimension of V ?
(b) Supplement more vectors to this basis to obtain a basis of \mathbb{R}^{5}.
5. Determine all values of c such that the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

$$
f(x, y, z)=(x+y+c z, c x+c y+z)
$$

is surjective.

