Some review problems for Final Exam

1. Diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 5 & 0 \\
-2 & 0 & 4
\end{array}\right]
$$

2. Let A be the matrix given in Problem 1. Find an explicit formula for A^{n}.
3. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the mirror reflection with respect to the plane $2 x+y-z=0$.
(a) What is the matrix representing f in standard basis?
(b) What is the image of the point $(3,-4,1)$ under this transformation?
4. Determine all values of a, b, c such that matrix

$$
A=\left[\begin{array}{lll}
1 & a & b \\
0 & 2 & c \\
0 & 0 & 3
\end{array}\right]
$$

is diagonalizable.
5. Determine all values of a such that matrix

$$
B=\left[\begin{array}{lll}
1 & a & 1 \\
0 & 1 & a \\
0 & 0 & 3
\end{array}\right]
$$

is diagonalizable.
6. Determine all solutions of the following system. If there are infinitely many solutions, write them in parametric vector form.

$$
\left\{\begin{array}{ccc}
x_{1}+x_{2}+2 x_{3}+x_{4} & = & 1 \\
2 x_{1}+x_{3}+x_{4} & = & 0 \\
x_{1}+2 x_{2}+x_{3}+2 x_{4} & = & 1 \\
x_{1}+x_{2} & = & -1
\end{array}\right.
$$

7. Consider the vectors

$$
\begin{aligned}
& v_{1}=(1,3,1) \\
& v_{2}=(1,1,-1) \\
& v_{3}=(-3,-4,2) \\
& v_{4}=(1,0,-2)
\end{aligned}
$$

(a) Is vector $v=(2,3,1)$ a linear combination of $v_{1}, v_{2}, v_{3}, v_{4}$?
(b) Find a basis for the vector space spanned by $v_{1}, v_{2}, v_{3}, v_{4}$.
(c) Do these vectors span \mathbb{R}^{3} ? Explain your answer.
8. Let

$$
A=\left[\begin{array}{cccc}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & -1 & 3 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]
$$

Find all vectors x satisfying the equation $A x=b$. If there are infinitely many solutions, write them in parametric vector form.
9. Let $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ be a sequence defined recursively as follows:

$$
\left\{\begin{array}{c}
x_{0}=1 \\
x_{1}=1 \\
x_{n+1}=x_{n}+2 x_{n-1}
\end{array}\right.
$$

Find an explicit formula for x_{n} in terms of n.
10. Let

$$
\begin{aligned}
& v_{1}=(1,0,1) \\
& v_{2}=(1,0,0) \\
& v_{3}=(2,1,1)
\end{aligned}
$$

Consider a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{aligned}
f\left(v_{1}\right) & =v_{1}-v_{2}+2 v_{3} \\
f\left(v_{2}\right) & =2 v_{1}-v_{2} \\
f\left(v_{3}\right) & =2 v_{1}-v_{2}
\end{aligned}
$$

(a) Check if $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of \mathbb{R}^{3}.
(b) Find $f(1,2,3)$.
(c) Find the matrix representing f in standard basis.
(d) Is f injective? Explain why.
(e) Is f surjective? Explain why.
11. Let

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 0 & 5 \\
3 & 2 & 0 & 5 & 2
\end{array}\right]
$$

(a) Determine the null space of A, a basis and the dimension.
(b) Determine the column space of A, a basis and the dimension.
(c) Determine the row space of A, a basis and the dimension.

Note: As a convention, the trivial space $\{0\}$ is 0 -dimensional, having basis \emptyset (the empty set).
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
f(x, y)=(x+y, x+1,2 y)
$$

Is f a linear map? Explain your answer.
13. Determine all values of c such that the following system is consistent, i.e. having at least one solution.

$$
\left\{\begin{array}{rlc}
x_{1}+x_{2}+c x_{3}+x_{4} & =c \\
-x_{2}+x_{3}+2 x_{4} & = & 0 \\
x_{1}+2 x_{2}+x_{3}-x_{4} & = & -c
\end{array}\right.
$$

