Homework Set 3

Due 10/12/2018

1. Let

$$
A=\left[\begin{array}{cc}
1 & 0 \\
3 & -5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
-2 & 1 \\
4 & -3
\end{array}\right] .
$$

Determine
(a) $2 A-3 B$,
(b) $(A+B)^{2}$,
(c) $A^{2}+2 A B+B^{2}$.
2. Let A and B be two square matrices of the same size. Show that the identities

$$
\begin{aligned}
(A+B)^{2} & =A^{2}+2 A B+B^{2} \\
A^{2}-B^{2} & =(A-B)(A+B)
\end{aligned}
$$

hold true if and only if $A B=B A$ (i.e. A and B commute with each other.)
Hint: write $(A+B)^{2}=(A+B)(A+B)$.
3. Determine if each following matrix is invertible. If so, find the inverse matrix.
(a)

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
2 & 2 & 3 \\
-1 & 0 & 1 \\
0 & 2 & 5
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 5 & -1 \\
-2 & -1 & -2
\end{array}\right]
$$

4. Recall that an invertible matrix A is always row equivalent to the identity matrix (denoted by $A \sim I_{n}$). As a consequence, A can be expressed as a product of elementary matrices. (An elementary matrix is a matrix obtained from the identity matrix I_{n} by performing on I_{n} one elementary row operation.) Factor the matrix in Part (a) and (b) of Problem 3 into elementary matrices.
5. Consider a linear transformation on the plane $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+2 y \\
3 x+5 y
\end{array}\right] .
$$

Let S be the square with vertices at

$$
Q_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad Q_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad Q_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad Q_{4}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Determine the inverse image of S under the linear transformation. In other words, what is the region R such that $f(R)=S$?
6. Find the determinant of the following matrices. Show the steps needed to get the answer.
(a)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 3 & 1 \\
3 & 4 & -5
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 2 & 3 \\
3 & 2 & -1
\end{array}\right]
$$

(d)
$\left[\begin{array}{llll}1 & 2 & 3 & 3 \\ 2 & 1 & 1 & 1 \\ 3 & 6 & 5 & 4 \\ 3 & 3 & 2 & 2\end{array}\right]$
(e)

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 4 \\
1 & 2 & 1 & 4 \\
0 & 3 & 2 & 2 \\
2 & 1 & 3 & 3
\end{array}\right]
$$

