Homework Set 4 Due 10/19/2018

1. Find the determinant of the following matrices. Show your work.

(a)		(c)	
	$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$		$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix}$
(b)		(d)	[2 -1 0 0]
	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$		$\begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$

2. To each following set of vectors, do the following:

- (1) Check if they are linearly independent.
- (2) If they are linearly dependent, write one vector as a linear combination of the others.
- (3) Find a basis for the space spanned by them.

(a)
$$v_1 = (1, 3, -1), v_2 = (3, 7, -7), v_3 = (1, 2, -3).$$

- (b) $v_1 = (2, 1, 3), v_2 = (1, 0, 1), v_3 = (0, 2, -1), v_4 = (4, 2, 1).$
- (c) $v_1 = (3, 8, 7, -3), v_2 = (1, 5, 3, -1), v_3 = (2, -1, 2, 6), v_4 = (1, 4, 0, 3).$
- (d) $v_1 = (0, 0, 2, 2), v_2 = (3, 3, 0, 0), v_3 = (1, 1, 0, -1).$
- 3. Find a basis for the subspace $\{x \in \mathbb{R}^4 : Ax = 0\}$ of \mathbb{R}^4 where

$$A = \left[\begin{array}{rrrrr} 1 & 2 & 3 & 1 \\ -1 & 0 & 2 & 0 \\ 1 & 4 & 8 & 2 \end{array} \right]$$

This is called the *null space* of matrix A.

- 4. Check if each following set is a subspace of \mathbb{R}^n .
 - (a) $V = \{x = (x_1, x_2) : x_1 + 2x_2 = 0\}$, a line through the origin in \mathbb{R}^2 .
 - (b) $V = \{x = (x_1, x_2) : x_1 + x_2 = 1\}$, a line not passing through the origin in \mathbb{R}^2 .
 - (c) $V = \{x = (x_1, x_2) : x_2 = x_1^2\}$, a parabola in \mathbb{R}^2 .
 - (d) $V = \{x = (x_1, x_2, x_3) : x_1 + x_2 x_3 = 0\}$ as a subset in \mathbb{R}^3 .