Homework Set 4

Due 10/19/2018

1. Find the determinant of the following matrices. Show your work.
(a)

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right]
$$

(b)
(d) $\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
2. To each following set of vectors, do the following:
(1) Check if they are linearly independent.
(2) If they are linearly dependent, write one vector as a linear combination of the others.
(3) Find a basis for the space spanned by them.
(a) $v_{1}=(1,3,-1), v_{2}=(3,7,-7), v_{3}=(1,2,-3)$.
(b) $v_{1}=(2,1,3), v_{2}=(1,0,1), v_{3}=(0,2,-1), v_{4}=(4,2,1)$.
(c) $v_{1}=(3,8,7,-3), v_{2}=(1,5,3,-1), v_{3}=(2,-1,2,6), v_{4}=(1,4,0,3)$.
(d) $v_{1}=(0,0,2,2), v_{2}=(3,3,0,0), v_{3}=(1,1,0,-1)$.
3. Find a basis for the subspace $\left\{x \in \mathbb{R}^{4}: A x=0\right\}$ of \mathbb{R}^{4} where

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
-1 & 0 & 2 & 0 \\
1 & 4 & 8 & 2
\end{array}\right]
$$

This is called the null space of matrix A.
4. Check if each following set is a subspace of \mathbb{R}^{n}.
(a) $V=\left\{x=\left(x_{1}, x_{2}\right): x_{1}+2 x_{2}=0\right\}$, a line through the origin in \mathbb{R}^{2}.
(b) $V=\left\{x=\left(x_{1}, x_{2}\right): x_{1}+x_{2}=1\right\}$, a line not passing through the origin in \mathbb{R}^{2}.
(c) $V=\left\{x=\left(x_{1}, x_{2}\right): x_{2}=x_{1}^{2}\right\}$, a parabola in \mathbb{R}^{2}.
(d) $V=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2} x_{3}=0\right\}$ as a subset in \mathbb{R}^{3}.

