Homework Set 5

Due 10/26/2018

1. Determine if vector $b=(-2,3,6)$ is a linear combination of the following vectors:

$$
v_{1}=(3,1,-1), v_{2}=(-1,2,-3), v_{3}=(1,-1,2), v_{4}=(2,1,-4) .
$$

If yes, write b as a linear combination of these vectors.
2. To each following set of vectors, do the following:
(1) Check if they are linearly independent.
(2) If they are linearly dependent, write one vector as a linear combination of the others.
(3) Find a basis for the space spanned by them. What is the dimension?
(a) $v_{1}=(2,3,0), v_{2}=(1,2,-1), v_{3}=(0,4,3)$.
(b) $v_{1}=(1,2,-1), v_{2}=(2,1,3), v_{3}=(-1,0,4), v_{4}=(0,3,1)$.
(c) $v_{1}=(-1,0,4,3), v_{2}=(2,0,-3,2), v_{3}=(0,1,-1,3), v_{4}=(4,-2,1,6)$.
(d) $v_{1}=(0,2,1,-1,1), v_{2}=(1,0,3,2,0), v_{3}=(-1,1,2,3,2)$.
3. Supplement additional vectors to the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ in Part (d) of Problem 2 to obtain a basis of \mathbb{R}^{5}.
4. Determine a basis and the dimension for the subspace $\left\{x \in \mathbb{R}^{4}: A x=0\right\}$ of \mathbb{R}^{4} where

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
-1 & 0 & 2 & 0 \\
1 & 4 & 8 & 2
\end{array}\right]
$$

This space is called the null space of matrix A. Its dimension is called the nullity of A.

