
Lab 4
Due 11/23/2018

I Instruction.
In this lab, we will use Matlab to

(a) Find coordinates of vectors with respect to a basis.

(b) Find the matrix representing a linear map with respect to a basis.

(c) Learn some simple applications of linear algebra in geometry and ecology.

Important commands and outputs should be shown. You also need to explain briefly
each step, not only show Matlab code. You are allowed to directly use the commands rref
and inv if need to.

II Practice.
Practice 1:
Consider the vectors

v1 = (2, 6, 5)

v2 = (5, 3, −2)

v3 = (7, 4, −3)

To check if these vectors form a basis for R3, we only need to check if they are linearly independent
(since we already have the right number of vectors). To do so, we form a matrix whose columns
are made of these vectors:

>> P = [v1 v2 v3]

Then check if determinant of A is nonzero:

>> det(P)

Note that if the determinant computed by Matlab is too close to zero, say 10−17 for example, then
the true determinant should be zero and therefore the matrix is singular. The very small error
is due to round-off or truncation error in Matlab. Think of the basketweave method: there is
no reason why a matrix made of nice whole-number entries could end up having such a strange
determinant. (This was the case in some matrices in Exercise 2 of Lab 2.) But in our case, the
determinant is equal to −1. Thus, S = {v1, v2, v3} is indeed a basis of R3.

Let b = (2, 3, 1). This triple is the coordinate of b in the standard basis S0 = {e1, e2, e3}. As
a convention, a vector is identified with its coordinate in the standard basis. In other words, we
consider b (a vector or a point in space) as (2, 3, 1), the coordinate of b in standard basis S0. One
can write b interchagebly with [b]S0 . Recall that the coordinate of b in basis S is a triple (c1, c2, c3)
such that b = c1v1 + c2v2 + c3v3. In matrix form,

b = P

c1c2
c3

 = P [b]S

Thus, [b]S = P−1b. In Matlab,

>> bS = inv(P)*b
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Practice 2:
A linear map f : Rn → Rm is uniquely defined if we know what f does on a basis of Rn. Let us
consider an example. The vectors

v1 = (2, 6, 5)

v2 = (5, 3, −2)

v3 = (7, 4, −3)

form a basis S of R3 as discussed previously. A linear map f : R3 → R2 would be well-defined and
unique if we know f(v1), f(v2), f(v3). Suppose

f(v1) = (1, 2) = w1

f(v2) = (3, −1) = w2

f(v3) = (0, −4) = w3

Any vector b ∈ R3 is a linear combination of v1, v2, v3. Write b = c1v1 + c2v2 + c3v3. We can
compute f(b) as follows:

f(b) = c1f(v1) + c2f(v2) + c3f(v3)

=

 | | |
f(v1) f(v2) f(v3)
| | |


︸ ︷︷ ︸

Q

c1c2
c3


︸ ︷︷ ︸
[b]S

= QP−1b.

From here we see that the matrix representing f in the standard basis is A = QP−1. The imple-
mentation in Matlab is rather simple:

>> Q = [w1 w2 w3]

>> A = Q*inv(P)

To find f(4, 2, 3) for example, we use the fact that f(b) = Ab :

>> b = [4;2;3]

>> fb = A*b

Practice 3:
Consider a linear map g : R3 → R3 satisfying

g(v1) = v1 − v3,
g(v2) = 2v1 + v2,

g(v3) = v2 + v3.

where v1, v2, v3 are given in Practice 1. Suppose we want to find an explicit formula of g in standard
basis. From the description of g, we see that the matrix representing g in basis S is:

[g]S =

 | | |
[g(v1)]S [g(v2)]S [g(v3)]S
| | |

 =

 1 2 0
0 1 1
−1 0 1


Denote by A the matrix representing g in the standard basis, which is the matrix we want to find.
We know that A and [g]S are related to each other by [g]S = P−1AP . Multiplying both sides by

2



P on the left, and by P−1 on the right, we get A = P [g]SP
−1. The result is

A =

 −23 26 −23
−379 410 −340
−431 465 −384


Thus, the explicit formula of g in standard basis is

g

xy
z

 =

 −23 26 −23
−379 410 −340
−431 465 −384

xy
z

 =

 −23x+ 26y − 23z
−379x+ 410y − 340z
−431x+ 465y − 384z


Practice 4:
Let us consider some applications of linear algebra in geometry. Almost all commonly-used geome-
try transformations are linear maps, except for the translations (simply because a translation does
not map the origin to the origin).

Consider the plane (P): x + 2y − z = 0 in the space. The (perpendicular) projection onto (P)
maps each point in the space to its projection on (P). How to write an explicit formula for this
linear map? We call it f : R3 → R3. To identify f , we only need to know what f does on a
basis of R3. We would like to choose three special vectors in R3 that have simple projections onto
(P). Any vector on (P) is mapped to itself under f . Two linearly independent directions in (P)
are v1 = (1, 0, 1) and v2 = (1, 1, 3). We know that f(v1) = v1 and f(v2) = v2. Another special
direction is the direction perpendicular to the plane (P). A vector in this direction can be seen
from the equation of (P), which is v3 = (1, 2,−1). We know that f maps v3 to the origin. In other
words, f(v3) = 0. Now that we have

f(v1) = v1,

f(v2) = v2,

f(v3) = 0.

Technically, at this point f is uniquely defined. To make it more explicit, we can find an explicit
formula for f in the standard basis using the method in Practice 3. We also see that v1, v2, v3 are
eigenvectors of f corresponding to eigenvalues 1, 1, 0 respectively. (Recall that an eigenvector is a
direction along which f acts by scaling. The corresponding eigenvalue is the scaling factor on that
direction.)

Another useful geometric transformation is the rotations. It is a little involved to describe
rotations in 3-dimensional space, so let us consider rotations on the 2-dimensional plane instead.
Let θ be the angle of rotation. The rotation is a linear map g : R2 → R2. To identify g, we need
to know how g acts on a basis of R2. It does not seem clear what directions are special. We will
consider the vectors in the standard basis: e1 = (1, 0) and e2 = (0, 1). The ending points of these
vectors lie on the unit circle. The image of e1 under the rotation is a point on the unit circle at
angle θ with respect to the x-axis. This point has coordinate (cos θ, sin θ). The image of e2 under
the rotation is a point on the unit circle at angle θ + π

2 with respect to the x-axis. This point has
coordinate (cos(θ + π

2 ), sin(θ + π
2 )) = (− sin θ, cos θ). We have found that

g(e1) = (cos θ, sin θ),

g(e2) = (− sin θ, cos θ)
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The matrix representing g in the standard basis is

A =

 | |
g(e1) g(e2)
| |

 =

[
cos θ − sin θ
sin θ cos θ

]

The explicit formula of g in standard basis is therefore

g

([
x
y

])
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

If θ = 0 (or θ = k2π for some integer k), the rotation is simply the identity map. Every direction is
preserved. In other words, every vector is an eigenvector. The eigenvalue (scaling factor) is 1. If θ
is otherwise, the rotation does not preserve any directions and thus has no real-valued eigenvectors.
However, it has complex-valued eigenvectors as well as complex-valued eigenvalues.

Practice 5:
To compute the eigenvectors of a square matrix (or a linear map), we usually start with computing
the eigenvalues by solving the equation

det(A− λIn) = 0.

This is the problem of finding roots of a polynomial. The degree of the polynomial is equal to the
size of matrix A. If A has size greater than 4, we run into trouble. In fact, it was proven by Ruffini
and Abel around 1799–1825 that a general polynomial of degree 5 or higher cannot be solved by
radicals. The strategy is to avoid solving for all eigenvalues before finding the eigenvectors. There
exist many numerical method to do so. Let us consider a simple method called power iteration.
This method only produces the largest (in sense of absolute value) eigenvalue and a corresponding
eigenvector. Such an eigenvalue is called dominant eigenvalue. The direction of the corresponding
eigenvector is called a principal direction. This direction is important in many applications. The
power iteration method only works under certain conditions:

• The matrix has n distict eigenvalues.

• The absolute values of the eigenvalues are also distinct.

If you pick randomly n2 real numbers to form an n× n matrix, almost surely the resulting matrix
will satisfy the above conditions. Therefore, the conditions are almost always satisfied. Let us
consider an example:

A =

[
1 3
3 1

]
To find a principal direction of A, we pick some direction to start with, say v0 = (2, 3). Then
update the direction by the following procedure:

• The updated direction is Av0. The normalized direction is vector v1 = Av0/‖Av0‖ where
‖Av0‖ is the magnitude of vector Av0.

• The updated direction is Av1. The normalized direction is vector v2 = Av1/‖Av1‖.

• (continue this procedure)

The more steps we make, the closer the resulting direction (vm after m steps) is to the principal
direction (an eigenvector corresponding to the largest eigenvalue). The reason why we normalize
the direction is to prevent the magnitude of the resulting vector from growing too large. Imagine
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that after a certain number of steps the resulting direction seems to settle on a direction v. Then
v is a fixed point in this loop, i.e.

v =
Av

‖Av‖
If we denote λ = ‖Av‖ then Av = λv. Then λ is an eigenvalue (it is in fact the dominant eigenvalue),
and v is a corresponding eigenvector. There is a subtle issue worth noting: for the procedure to
converge, the dominant eigenvalue must be positive. This can be overcome by checking if the
quantity (Avm)·vm

vm·vm converges (instead of checking if vm converges). However, we will not focus on
this issue here. The recursive procedure above can be programed in Matlab as a function:

function v = powerIter(A,v0,m)

v = v0

for i = 1:m

v = A*v/norm(A*v)

end

The inputs are: matrix A, the initial direction v0 (which is a column vector) to start with, and the
number of steps m. The output is the resulting direction at the m’th step. (The resulting directions
at all previous steps are also printed out.) Copy the above code segment to a new script file (.m)
and save under the name powerIter.m (Make sure that the file’s name is the same as the function’s
name, which is “powerIter” in this case.) Now apply this function for m = 30 for example.

>> v = powerIter(A,v0,30)

Since what step do you notice that the resulting direction starts to converge? The limiting direction
seems to be v = (0.7071, 0.7071). This is an eigenvector corresponding to the dominant eigenvalue:

>> lambda = norm(A*v)

which gives λ = 4. Now try using a different initial direction, say v0 = (50, 39). Will the limiting
direction and dominant eigenvalue change?

Another way to look at the above procedure is that vm, the resulting direction at the m’th step,
is actually given by

vm =
Amv0
‖Amv0‖

.

You can verify by hand this formula for small values of m without difficulty. This is why the
method has the name “power iteration”. If vm converges to v as m → ∞, then Amv0 tends to be
aligned with (i.e. parallel to) v, the principal direction of A, for large m regardless of the choice of v0.

III Exercises.

1. Consider the vectors

v1 = (3, 7, 0, 0)

v2 = (2, 5, 0, 0)

v3 = (1, 2, 9, 11)

v4 = (2, 5, 4, 5)

Check if they form a basis of R4. Then find the coordinate of the vectors a = (2, 4, −1, 3)
and b = (1, −3, 5, 2) in basis S = {v1, v2, v3, v4}.
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2. Let v1, v2, v3, v4 be given as in the previous exercise. Let f : R4 → R3 and g : R4 → R4 be
linear maps satisfying:

f(v1) = (1, 3, 4)

f(v2) = (−1, 0, 3)

f(v3) = (0, 5, 2)

f(v4) = (−2, −3, 1)

and

g(v1) = v1 + v2 − 2v4

g(v2) = 2v1 + 3v2 − 4v3

g(v3) = 4v1 − 2v2 − v3 + v4

g(v4) = 2v4

(a) Find the matrices representing f in the standard basis.

(b) Find the matrices representing g in basis S = {v1, v2, v3, v4} and in the standard basis.

(c) Find the matrix representing the composite map f ◦ g in the standard basis.

3. On the 2-dimensional plane, consider the mirror reflection about the line

(l) : x+ 2y = 0

(a) Form a matrix representing the transformation in the standard basis.

(b) Determine the eigenvectors and eigenvalues of this transformation.

(c) Determine the image of the point (−20, 39) under the transformation.

4. On the 2-dimensional plane, consider a transformation composed of a rotation about the
origin by 30◦ (which is π/6 radian) followed by a scaling by factor 2.

(a) Form a matrix representing the transformation in the standard basis.

(b) Determine the real-valued eigenvectors and real-valued eigenvalues (if exist) of this trans-
formation.

(c) Determine the image of the point (−1, 3) under the transformation.

5. Consider an ecosystem consisting of lions, hyenas and antelopes. Each species is counted at
the end of each year. To give an approximate mathematical model for the system, we adopt
the convention that the population (i.e. the number of individuals) is not necessarily a whole
number. Denote by xn, yn, zn the population of lions, hyenas and antelopes respectively
counted at the end of year n. Over the years, suppose ecologists observe that:

• The population of lions is equal to 101% of their population of the previous year (due to
minimal reproduction rate), minus 1% of the hyena population of the previous year (due
to food competition and fightings), plus 3% of the antelope population of the previous
year (due to food supply).

• The population of hyenas is equal to 102% of their population of the previous year, minus
1% of the lion population of the previous year, plus 5% of the antelope population of
the previous year.

• The population of antelopes is equal to 140% of their population of the previous year,
minus 10% of the lion population of the previous year, minus 10% of the hyena population
of the previous year.
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(a) Express a relation between xn+1, yn+1, zn+1 and xn, yn, zn in matrix form.

(b) Suppose the initial populations (n = 0) are 7 lions, 15 hyenas and 100 antelopes. Deter-
mine the population of each species at the end of the sixth year.

(c) Determine the ratio of lion : hyena : antelope at an ecosystem equilibrium (i.e. the
limiting ratio over the years). Does it change when you vary the initial populations x0,
y0, z0?
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