Some review problems for Midterm

1. Solve the following system of linear equations. If a system has infinitely many solutions, write the solutions in parametric vector form.
(a)

$$
\left\{\begin{array}{rlc}
x_{1}+x_{2}+x_{3} & = & 4 \\
-x_{1}-x_{2}+x_{3} & = & -2 \\
2 x_{1}-x_{2}+2 x_{3} & = & 2
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{clc}
3 x_{1}+2 x_{2}-x_{3}-x_{4} & = & -3 \\
-x_{1}+x_{3}+2 x_{4} & = & 1 \\
2 x_{1}+2 x_{2}+x_{4} & = & -2 \\
x_{1}+2 x_{2}+x_{3}+3 x_{4} & = & -1
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{rlc}
2 x_{1}+x_{2}-2 x_{3} & =1 \\
x_{1}+2 x_{2}-5 x_{3} & =-2 \\
-x_{1}+x_{2}-3 x_{3} & =-3
\end{array}\right.
$$

(d)

$$
\left\{\begin{array}{cc}
x_{1}+2 x_{2}+x_{3} & =2 \\
x_{1}+3 x_{2} & =3 \\
x_{1}+x_{2}+2 x_{3} & =2
\end{array}\right.
$$

2. Determine all values of a such that the matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & 7 & 10 \\
1 & a & 3 & 3 \\
1 & -1 & -2 & 1
\end{array}\right]
$$

has full rank.
3. Is the following matrix invertible? If it is, find the inverse matrix.

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -1 & 3 \\
-1 & 0 & 1
\end{array}\right]
$$

4. Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
$$

(a) Determine all values of k such that the matrix $A-k I_{2}$ fails to be invertible.
(b) Find a nonzero vector v such that $A v=5 v$.
5. Matrix B is said to commute with matrix A if $A B=B A$. Find all matrices that commute with $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$. Your answer will contain some arbitrary constant(s).
6. Can the following matrix be the product of elementary matrices? If yes, factor it into elementary matrices. If no, explain why.
(a)

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

