Quiz 1
10/3/2018

Name: \qquad
Instructions: Show your work. Circle your final answers. The quiz has two pages.
$4 \mathrm{pts}_{\mathrm{s}}$. 1. Solve the following system of linear equations by Gauss elimination method.

$$
\begin{cases}x+2 y+3 z & =9 \\ 2 x-y+z & =8 \\ 3 x-z & =3\end{cases}
$$

Augmented matrix: $\left[\begin{array}{ccc|c}1 & 2 & 3 & 9 \\ 2 & -1 & 1 & 8 \\ 3 & 0 & -1 & 3\end{array}\right] \xrightarrow[R_{3}=R_{3}-3 R_{1}]{R_{1}}\left[\begin{array}{ccc|c}1 & 2 & 3 & 9 \\ 0 & -5 & -5 & -10 \\ 0 & -6 & -10 & -24\end{array}\right]$

$$
\begin{aligned}
& R_{2}=R_{2} /(-S) \\
& \xrightarrow[\substack{ \\
R_{1}=R_{1}-2 R_{2} \\
R_{3}=R_{3}+6 R_{2}}]{R_{2}=R_{2}(-S)}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & 1 & 2 \\
0 & 0 & -4 & -12
\end{array}\right] \\
& \xrightarrow[\substack{R_{1}=R_{1}-R_{3} \\
R_{2}=R_{2}-R_{3}}]{R_{3} /(-4)}\left[\begin{array}{lll|r}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] \quad \text { (REF) }
\end{aligned}
$$

Therefore, $x=2, y=-1, z=3$.

4 pts. 2. Determine the rank of matrix

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
1 & -2 & 1 & 0 \\
1 & -5 & 0 & -4
\end{array}\right] \\
R_{3}=R_{3} \cdot R_{1} \\
R_{2}=R_{1}
\end{gathered}\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
0 & -3 & -1 & -4 \\
0 & -6 & -2 & -8
\end{array}\right] \xrightarrow{R_{3}=R_{3}-2 R_{2}}\left[\begin{array}{cccc}
1 & 1 & 2 & 4 \\
0 & -3 & -1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This is in ow ectrelon form (REF) The number of nonzero rows is 2 .

$$
\operatorname{rank}(A)=2 .
$$

2 pts.3. Can a system of linear equations with 2 equations and 3 unknowns have a unique solution? If yes, give an example of such a system. If no, explain why.
In order for a system to have a unique solution, i\& RREF must satisfy two following conditions:

- There are no rows of the form $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ \mathfrak{a}\end{array}\right]$
- All columns (on the right of the bar) must be pivot columns.
$\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & *\end{array}\right]$. The second condition cannot be satisfied in our case, because there is always at least one nompivot column.

