Quiz 2
10/10/2018

Name:
Instructions: Show your work. Circle your final answers. The quiz has two pages.
Zpts 1. Suppose $A_{1}, A_{2}, A_{3}, A_{4}$ are invertible matrices of the same size. Is matrix

$$
A=2 A_{1} A_{2}^{-1} A_{3}^{-1} A_{4}
$$

invertible? If so, write A^{-1} in terms of $A_{1}, A_{2}, A_{3}, A_{4}$. If not, give a counterexample.

$$
\begin{aligned}
& \text { Yes, } A \text { is invertible. } \\
& \qquad A^{-1}=\frac{1}{2} A_{4}^{-1} A_{3} A_{2} A_{1}^{-1}
\end{aligned}
$$

$4 p^{-1}$ 2. Find the inverse of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]} \\
& {\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{R_{3}=R_{3}-R_{2}}\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right]} \\
& \xrightarrow{R_{3}=R_{3}-R_{2}}\left[\begin{array}{ccc:ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right] \\
& \left.\stackrel{R_{1}=R_{1}+R_{3}}{R_{2}=R_{2}+R_{3}} \begin{array}{lll|ccc}
R_{3}=-R_{3}
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right] \quad A^{-1}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

2 pts 3 . Let A and D be two 3 -by- 3 matrices. Suppose A can be transformed into D by the following elementary row operations:

$$
A \xrightarrow{R_{1}=R_{1}+2 R_{2}} B \xrightarrow{R_{3}=2 R_{3}} C \xrightarrow{R_{2} \leftrightarrow R_{3}} D
$$

(a) What is the reverse chain that takes D back to A ?

$$
P \xrightarrow{R_{2} \leftarrow R_{3}} C \xrightarrow{R_{3}=\frac{1}{2} R_{3}} B \xrightarrow{R_{1}=R_{1}-2 R_{2}} A
$$

$2 p t_{s(\mathrm{~b})}$ If $D=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & -1 & 2\end{array}\right]$, is A invertible? Explain why or why not. No. A is cow equistutert to D. D has a zero row. Then the RREF of D also has a zero, which cunt he equal to the identity motion. D is not invertible $\Rightarrow A$ is not either.

