Quiz 3
10/17/2018

Name:
Instructions: Show your work. Circle your final answers. The quiz has two pages.

1. Let A, B, C be 2-by-2 matrices with determinant $|A|=1,|B|=2,|C|=3$.

1 pt (a) What is the determinant of $3 B$?

$$
1331=3^{2}|B|=9 \times 2=18
$$

2 pts (b) What is the determinant of $2 A^{2} B^{-1} C$?

$$
\left|2 A^{2} B^{-1} C\right|=2^{2}|A|^{2}|B|^{-1}|C|=4 \times 1^{2} \times \frac{1}{2} \times 3=6
$$

4 pts 2. Determine all values of a such that the following matrix is invertible

$$
\begin{aligned}
& \operatorname{det}=(a-4+0)-(-3 a-2+0)=a+3 a-4+2=4 a-2 \\
& \text { The matin is invertible if and only if deft } \neq 0 \text {. } \\
& \text { That is, } a \neq \frac{1}{2} .
\end{aligned}
$$

3 pts 3 . Let A and B be 2-by- 2 matrices. Is the equality

$$
\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B
$$

always true? If yes, explain why. If no, give a counterexample.
No. For example, $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{gathered}
|A|=1,|B|=1 \\
A+B=\left[\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right] \\
|A+B|=4 \neq|A|+|B|
\end{gathered}
$$

(there are a lat of other counterexamples.)

