Quiz 5

11/07/2018

Name:

\qquad
Instructions: Show your work. Circle your final answers. The quiz has two pages.

1. Consider a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,

$$
f(x, y, z)=(x+z, y+2 z,-2 x+y)
$$

rpt (a) Write the matrix representing f.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
-2 & 1 & 0
\end{array}\right]
$$

opt (b) Given that the reduced row echelon form of the matrix in Part (a) is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Determine a basis of $\operatorname{ker}(f)$ and the dimension. Is f injective?
hon pivot column

$$
\left\{\begin{array}{l}
x_{3}=t \\
x_{2}=-2 t \\
x_{1}=-t
\end{array} \quad \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right.
$$

$$
\operatorname{ker}(f) \text { is } 1 \text {-dimensional, with basis }\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right\}
$$

$$
f \text { is not injective. }
$$

$3 p^{t}$ (c) Determine a basis of range (f) and the dimension. Is f surjective?
The first and second column of A form a tais for range (p):

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \quad \text { range (f) is 2-dimensimal. }
$$

f is not surjective.
$2 p t^{2}$. Let

$$
E=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & 0 & -2
\end{array}\right] \quad 2 \times 3 \text { matrix }
$$

What is the linear map matrix E represents? (Write the domain, target set, and an explicit formula of the map.)

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=[\underbrace{-1}_{E} 10 \\
& \underbrace{-1} \begin{array}{c}
-2 \\
\hline
\end{array}]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x+y+2 z \\
3 x-2 z
\end{array}\right]
\end{aligned}
$$

