Quiz 6

11/14/2018

Name:

\qquad
Instructions: Show your work. Circle your final answers. The quiz has two pages.

1. Consider a basis $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3} where
$2 p t$

$$
\begin{aligned}
& v_{1}=(2,6,5) \\
& v_{2}=(5,3,-2) \\
& v_{3}=(7,4,-3)
\end{aligned}
$$

Set up a formula to compute the coordinate of vector $b=(2,3,1)$ in basis S. (You don't need to compute matrix inverse or matrix multiplication. Only set up a correct formula for $[b]_{S}$.)

$$
[b]_{s}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & v_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right]^{-1}[b]_{S_{0}}=\left[\begin{array}{ccc}
2 & 5 & 7 \\
6 & 3 & 4 \\
5 & -2 & -3
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

2. Consider the matrix

$$
A=\left[\begin{array}{ll}
4 & 1 \\
6 & 3
\end{array}\right]
$$

$2 p t(a) \operatorname{Compute} \operatorname{det}\left(A-\lambda I_{2}\right)$.

$$
\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}
4-\lambda & 1 \\
6 & 3-\lambda
\end{array}\right|=(4-\lambda)(3-\lambda)-6=\lambda^{2}-7 \lambda+6
$$

(b) Compute the eigenvalues of A. Label them by λ_{1} and λ_{2} such that $\lambda_{1}<\lambda_{2}$. 2pt $\lambda^{2}-7 \lambda+6=(\lambda-1)(\lambda-6) \ldots$ has two roots

$$
\lambda_{1}=1, \quad \lambda_{2}=6
$$

(c) Determine $E\left(\lambda_{1}\right)$, the eigenspace corresponding to λ_{1}. Determine a basis and the dimenapt sion. null space of $A-I_{2}=\left[\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right] \xrightarrow[R_{1}=R_{1} / 3]{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc}
1 & 1 / 3 \\
0 & 0
\end{array}\right]} \\
x_{2}=t \\
x_{1}=-t / 3 \\
E\left(\lambda_{1}\right)=\left\{\left[\begin{array}{c}
-t / 3 \\
t
\end{array}\right]: t \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 / 3 \\
1 \\
1
\end{array}\right]\right\} \quad \operatorname{dinot} \text { column } \quad \operatorname{din} E\left(\lambda_{1}\right)=1
\end{gathered}
$$

2pt (d) Determine $\underbrace{E\left(\lambda_{2}\right)}_{\text {sion. }}$, the eigenspace corresponding to λ_{2}. Determine a basis and the dimen-

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-2 & 1 \\
6 & -3
\end{array}\right] \xrightarrow[R_{1}=R_{1} /(-2)]{R_{2}=R_{2}+3 R_{1}}\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right]} \\
& \text { 个nonpivot column } \\
& x_{2}=t \\
& x_{1}=t / 2 \\
& E\left(\lambda_{2}\right)=\left\{\left[\begin{array}{c}
t / 2 \\
t
\end{array}\right]: t \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
\hat{U}_{\text {basis }}
\end{array}\right]\right\} \\
& \operatorname{dim} E\left(\lambda_{2}\right)=1
\end{aligned}
$$

