Quiz 7

11/21/2018

Name: _____

Instructions: Show your work. Circle your final answers. The quiz has two pages.

1. Consider a basis $S = \{v_1, v_2, v_3\}$ of \mathbb{R}^3 where

$$v_1 = (2, 6, 5)$$

$$v_2 = (5, 3, -2)$$

$$v_3 = (7, 4, -3)$$

Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map satisfying

$$f(v_1) = v_1 + v_2 f(v_2) = v_2 + v_3 f(v_3) = v_1 + v_3$$

2pt (a) Write the matrix representing f in basis S.

r <i>o</i> l			0	רי
lfls=		ι	1	0
	/	0	1	17

2pt (b) Set up a correct formula for the matrix A representing f in the standard basis. You don't need to compute matrix inverse or matrix multiplication. Your answer should not contain any letters.

$$\begin{aligned}
\hat{I}_{-} & \begin{bmatrix} 1 & 1 & 1 \\ v_{1} & v_{2} & v_{3} \\ 1 & 1 & 1 \end{bmatrix} & & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} \\
\hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} \\
\hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} \\
\hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} \\
\hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} & \hat{I}_{-} \\
\hat{I}_{-} & \hat{I}_{-$$

2. Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

 $2 \not r$ (a) Determine all eigenvalue(s) of A together with their multiplicity. *Hint: the matrix is already in upper triangular form.*

$$\lambda = 2$$
 (the only entry only the diagonal)
multiplicity = 3

Zpt (b) Determine the eigenspace(s) of A. What is its dimension?

$$A - \lambda I = A - 2I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_{1} = S$$

$$x_{2} = t$$

$$x_{2} = 0$$

$$x_{3} = 0$$

$$x_{4} = 0$$

$$x_{5} = 0$$

 $2\mu t$ (c) Is A diagonalizable? If yes, diagonalize it. If no, explain why.

No. The dimension of
$$E(\lambda)$$
 is less than the multiplicity of λ .
(there are only 2 lin. ind. eigenvectors, not sufficient to form
a basis for IR^3).