Final Review
Answer Key

1. Let V = P5(R) be the vector space of all polynnomials of degree < 2 with real coefficients.
Let

Vi={feV:fQ1)

0
Vo={feV:f(2) =0}

}7
}

Is Vi + V5 a direct sum?

Solution: No. One way to prove that V; + V5 is not a direct sum of V; and V5 is to show
that
VinVy # {0}

That is, we can try to find a nonzero polynomial f € V) N V;. Notice that we want f(1) =0
and f(2) =0, so (x — 1) and (x — 2) should be factors of f(x). We can set

f)=(z—-1)(z—-2)=2*-3z+2

Then f # 0 (since, for example, f(0) = 2), and f € Vi N V. Therefore Vi NV, # {0}, so the
sum is not direct.
2. Let V = P»(R). Define ¢(u) = |u(1)| + |u(2)| for any u € V. Is ¢ a norm on V?

Solution: No. To show ¢ is a norm, we need to show three properties:

(i) Positivity: ¢(u) > 0 for all w € V and if ¢(u) = 0 then u = 0.
(ii) Homogeneity: ¢(Au) = [A|p(u) for all w € V and X € F.
(iii) Triangle inequality: ¢(u + v) < ¢(u) + ¢(v) for all u,v € V.

In this case, the only thing that is not satisfied is the statement that if ¢(u) = 0 then u = 0.

To see this, let
v=(z—-1)(z—-2)=2>-3x+2€V.

Then
¢(u) = [u()] + |u(2)| =0+ 0=0,

but u # 0.
3. Let V = Py(R). Define ¢(u) = |u(1)| + |u(2)] + |u(3)| for any u € V. Show that ¢ is a norm
on V.
Solution: To show that ¢ is a norm on V', we need to prove each of the properties listed in
the solution to problem 2 above.
(i) Positivity: Let u € V. Then by the definition of absolute value, |u(1)] > 0, |u(2)| > 0,
and |u(3)] =0, so
¢(u) = [u(D)] + [u(2)| + [u(3)] = 040 = 0.
Now suppose ¢(u) = 0. Then we must have u(1) = u(2) = u(3) = 0. The only way for

this to be possible is if w = 0 or if (z — 1), (z — 2), and (x — 3) are all factors of u. In
the second case, u must be a some multiple of

(x —1)(x —2)(x —3)

so u would be a polynomial of degree at least 3. Since we assumed u € P»(R), this is
impossible, so we must have u = 0.
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(ii) Homogeneity: Let A € F' and w € V. Then

¢(Au) = [Au(1)] + [ Au(2)] + [Au(3)]
= M|u(L)] + [A[Ju(2)] + [A]]uw(3)] by a property of absolute value
= AL (Ju()] + [u(2)] + [u(3)])
= [Alo(w),
so homogeneity is satisfied.

(iii) Triangle inequality: Let u,v € V. Then |u(x) 4+ u(y)| < |u(z)| + |u(y)| since absolute
value satisfies the triangle inequality. Them

¢(u+v) = lu() + o) + [u(2) + v(2)] + |u(3) + v(3)]
< fu(D] + o] + [u@)] + [0(2)] + |uB3)] + [v(3)]
= (e[ + [u@)] + [uB3)]) + (Jv(D)] + [v(2)] + [0(3)])
= o(u) + ¢(v),

so ¢ satisfies the triangle inequality.

4. Put

Vi={A€ My(R): A= AT},
Vo ={A€ Myr(R): A=—AT}.

Show that V] @& Vo = M2><2(R).

Solution: Recall the definition of the transpose of a matrix:

]

Now we need to find bases for these two subspaces. First consider Vi:

Vlz{_i _€M2X2(R):[Z Z]:[Z Cci]}

€ Myxo(R):a=a, b=c, c=0, d:d}

€ Mayxo(R) : b= c}

(9
Q.C“IIQ.G‘IQ.O‘IQ.@

:a,b,dE]R}

10 0 1 00
= a[o 0}—1—1)[1 0]+d[0 1].a,b,d€R}

s= {0 L0 o)

so a basis for V7 is
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Now consider Vs:

a b a b —-a —c
V2_{_c d| GMM(R)'L d]_[—b —d]}
:{Z Z EMQXQ(R):CL——CL,b:—c,c:—b,d:—d}
L% ¥ e Mo ®) sa=d =0, b=
e 4 2x2 ca=a=4, b=—C
[0 b
_{__b 0}.1)61&}
0 1
_{b[_l 0].beR}
so a basis for V5 is o 0 1
27 -1 ol [

The set

p-mom= {0 .0 0L [ )

is a spanning set for V; + V5. To show that V; + V5 is a direct sum we want to prove that B
is linearly independent. To do this, write each element of B as a vector in R*:

B ={(1,0,0,0),(0,1,1,0),(0,0,0,1),(0,1,—1,0)}.

Create a matrix using the elements of B as rows and begin row reduction:

10 0 O 1.0 0 O
0 1 1 0| Ry+Ry—R: |0 2 0 O
00 0 1 00 0 1
01 -1 0 01 —1 0

It should be obvious to you at this point that this reduces to the 4 x 4 identity matrix (if it’s
not obvious, continue reducing). This means that B is linearly independent, so Vi + V5 is a
direct sum.

Since B is a basis for Vj @ Va, we have dim(V; @ V) = 4. Since V; @ V5 is a subspace of the
4-dimensional space R* we must have that V; @ Vo = R%.
. Let
V= {(:cl,xg,xg,a:4) e R*: To =1+ T3, T3 = 2x1 — X9 + 5.%4}.
Find a subspace W of R* such that V ¢ W = R*.

Solution: First we want to find a basis for V. To do this notice that the conditions of V' can

be rewritten as
r1 —x2+2x3=0

2x1 —x9 —x3 + brgy = 0.

o)

It is important to note that the rows of this matrix are NOT elements of V.

Written as an augmented matrix, this is

1 -1 1 0
2 -1 =15
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Now, perform row reduction:

[1 -1 1 00] Ro—2R1—Rs [1 -1 1 00]
_

2 -1 -1 510 0 1 -3 510
Ri+Ry—R, |1 0 —2 510
[O 1 -3 50]

This gives the equations

xr1 = 2.%'3 — 5.%'4

Xro = 3.7}3 — 5.7}4,
SO

V= {(xl,xg,a;g,a:4) € R4 Tx = 203 — 5.%'4, To = 3r3 — 5.%'4}
= {(2.’B3 — 5.’B4, 3.7}3 — 5.7}4,%‘3,.%'4) 1 T3,%4 € R}
= {1'3(2,3, 1,0) + $4(—5, —5,0, 1) 1 X3,T4 € R}.

A basis for V is
B =1{(2,3,1,0),(—5,-5,0,1)}.

Now form a matrix using the basis vectors as rows:

2 3 10
-5 —5 0 1}|°

By adding the rows (1,0,0,0) and (0,1,0,0) we can see that the resulting matrix

2 3 10
-5 =5 0 1
1 0 0 0
0 1 00

reduces to the identity matrix. Therefore the set
B =1{(2,3,1,0),(-5,-5,0,1),(1,0,0,0),(0,1,0,0)}
is linearly independent. Let

W = span({(1,0,0,0),(0,1,0,0)})
= {(21,22,0,0) : 21,22 € R}.

Then dim(W) = 2, and B is a basis for V + W. Since
dim(V) +dim(W) =2+2 =4 =dim(V + W)

this is a direct sum. Now, V @ W is a 4-dimensional subspace of the 4-dimensional space R?,
so we must have V @ W = R%.



6. Let V be the vector space of all smooth functions from R to itself. Let F': V' — V be a linear
map defined by F(u) =« — u. Let W be the vector space of all smooth functions satisfying
the differential equation u” + u’ + u = 0. Show that W is invariant under F.

Solution: Let w € W, so w satisfies
w’ +w' +w=0.
Then z = F(w) = w’ — w. We want to show that z satisfies 2" + 2’ + z = 0:

2+ +z—(w’ ) (w’—w)'+(w’—w)
=w" —w' +uv —uw+uw —w
= (w" +w" +w') - (v —w —w)
= (w" +u' +w) (w" —w' —w)

=0+
=0+0
=0.

Therefore F(w) = z € W, so W is invariant under F'.

7. Let V = Myy2(R). Let f: V — V be a linear map defined by f(A) = A”. Is f diagonalizable?
If it is, find a basis of V' in which f is represented by a diagonal matrix.

Solution: Since f is a map from May2(R) to Mayx2(R) we begin by finding a basis for
Msy2(R) and representing f as a 4 x 4 matrix. Consider the basis B for My 2(R) given by

p={ls oo o0 315 )

Applying f to the elements of B, we get

1 0 1 0
f<_0 0_)‘_0 0]’
0 1] [0 0]
f<_o 0_)‘_1 0]’
(0 0] 0 1]
f<_1 0_)‘_0 0]’
[0 0] [0 0]
(o ) -=10 3
The matrix for f is then

1000
0010
A=Ulss=1y 1 ¢ o
00 0 1

(continued on next page)



We now want to find the eigenvalues of this matrix. Calculate the characteristic polynomial:

1-X 0 0 0
0 0-Xx 1 0
det(A—AI)=| | oo o
0 0 0 1-2A
A 10
=(1-MN1 =X 0 |-040-0
0 0 1-2A

—(1-\) ((—/\)'—O)\ 19/\’—(1)‘(1) 1E>\‘+0>

=1 =N[ENENA=A) = (1 =)

=([1-NA-NK\-1)

=(EDA-DEDA-DA-DA+1)
=\ -1’ +1).

Setting (A — 1)3(\ + 1) we get the eigenvalues A = 1 and A = —1.

Now we want to find the eigenspaces for each eigenvalue. That is, we want to solve
(A= X)v=0

for v = (v1,v2,v3,v4) € R%. First let A = 1. The augmented form of (A — A\ )v = 0 is

1-1 0 0 0 0 1 0 0 0|0 01 -1 0/0
0 0—-1 1 0 0 _ 0 -1 1 0] 0| row reduction 0 0 0 00
0 1 0—-1 0 0 0O 1 -1 010 00 0 0|0}|”
0 0 0 1-11]0 0O 0 0 1]0 00 0 0f0
so v2 — vz = 0 and hence vg = v3. The eigenvectors v can be written as
U1 1 0 0
v= | =v U +v : + 0
Tl T MO 211 *10
V4 0 0 1
A basis for the eigenspace Fj is
B, ={(1,0,0,0),(0,1,1,0),(0,0,0,1)}.
Now let A = —1 and follow the same process:
1+1 0 0 0 0 2 0 0 010 10 0 0]0
0 0+1 1 0 0 - 0 1 1 0]|0| rowreduction |0 1 1 010
0 1 0+1 0 0 01 1010 0 00 1/0|°
0 0 0 1+11]0 000 20 0 00 0f0
so v1 = v4 = 0 and vo = —v3. The eigenvectors v can be written as
0 0
v=| 2| =v !
o —V2 -2 —1
0 0
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A basis for the eigenspace F_1 is
B_; ={(0,1,-1,0)}.

Since
dim(E;) +dim(E_;) =3+ 1 =4 = dim(V),

the linear map f is diagonalizable. Converting the elements of the set B; U B_; back into

2 x 2 form gives
B— 1 0] (0 1] |0 O 0 1
1|0 o]’|1 of’|0 1]|’|-1 O|["

Then B is a basis for V under which f is represented by the diagonal matrix

10 0 O
010 O
001 O
0 0 0 -1



