
Final Review
Answer Key

1. Let V = P2(R) be the vector space of all polynnomials of degree ≤ 2 with real coefficients.
Let

V1 = {f ∈ V : f(1) = 0},
V2 = {f ∈ V : f(2) = 0}.

Is V1 + V2 a direct sum?

Solution: No. One way to prove that V1 + V2 is not a direct sum of V1 and V2 is to show
that

V1 ∩ V2 6= {0}.

That is, we can try to find a nonzero polynomial f ∈ V1 ∩ V2. Notice that we want f(1) = 0
and f(2) = 0, so (x− 1) and (x− 2) should be factors of f(x). We can set

f(x) = (x− 1)(x− 2) = x2 − 3x+ 2.

Then f 6= 0 (since, for example, f(0) = 2), and f ∈ V1 ∩ V2. Therefore V1 ∩ V2 6= {0}, so the
sum is not direct.

2. Let V = P2(R). Define φ(u) = |u(1)|+ |u(2)| for any u ∈ V . Is φ a norm on V ?

Solution: No. To show φ is a norm, we need to show three properties:

(i) Positivity: φ(u) ≥ 0 for all u ∈ V and if φ(u) = 0 then u = 0.

(ii) Homogeneity: φ(λu) = |λ|φ(u) for all u ∈ V and λ ∈ F .

(iii) Triangle inequality: φ(u+ v) ≤ φ(u) + φ(v) for all u, v ∈ V .

In this case, the only thing that is not satisfied is the statement that if φ(u) = 0 then u = 0.
To see this, let

u = (x− 1)(x− 2) = x2 − 3x+ 2 ∈ V.
Then

φ(u) = |u(1)|+ |u(2)| = 0 + 0 = 0,

but u 6= 0.

3. Let V = P2(R). Define φ(u) = |u(1)|+ |u(2)|+ |u(3)| for any u ∈ V . Show that φ is a norm
on V .

Solution: To show that φ is a norm on V , we need to prove each of the properties listed in
the solution to problem 2 above.

(i) Positivity: Let u ∈ V . Then by the definition of absolute value, |u(1)| ≥ 0, |u(2)| ≥ 0,
and |u(3)| = 0, so

φ(u) = |u(1)|+ |u(2)|+ |u(3)| ≥ 0 + 0 = 0.

Now suppose φ(u) = 0. Then we must have u(1) = u(2) = u(3) = 0. The only way for
this to be possible is if u = 0 or if (x − 1), (x − 2), and (x − 3) are all factors of u. In
the second case, u must be a some multiple of

(x− 1)(x− 2)(x− 3)

so u would be a polynomial of degree at least 3. Since we assumed u ∈ P2(R), this is
impossible, so we must have u = 0.
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(ii) Homogeneity: Let λ ∈ F and u ∈ V . Then

φ(λu) = |λu(1)|+ |λu(2)|+ |λu(3)|
= |λ||u(1)|+ |λ||u(2)|+ |λ||u(3)| by a property of absolute value

= |λ| (|u(1)|+ |u(2)|+ |u(3)|)
= |λ|φ(u),

so homogeneity is satisfied.

(iii) Triangle inequality: Let u, v ∈ V . Then |u(x) + u(y)| ≤ |u(x)| + |u(y)| since absolute
value satisfies the triangle inequality. Them

φ(u+ v) = |u(1) + v(1)|+ |u(2) + v(2)|+ |u(3) + v(3)|
≤ |u(1)|+ |v(1)|+ |u(2)|+ |v(2)|+ |u(3)|+ |v(3)|
= (|u(1)|+ |u(2)|+ |u(3)|) + (|v(1)|+ |v(2)|+ |v(3)|)
= φ(u) + φ(v),

so φ satisfies the triangle inequality.

4. Put

V1 = {A ∈M2×2(R) : A = AT },
V2 = {A ∈M2×2(R) : A = −AT }.

Show that V1 ⊕ V2 = M2×2(R).

Solution: Recall the definition of the transpose of a matrix:[
a b
c d

]T
=

[
a c
b d

]
.

Now we need to find bases for these two subspaces. First consider V1:

V1 =

{[
a b
c d

]
∈M2×2(R) :

[
a b
c d

]
=

[
a c
b d

]}
=

{[
a b
c d

]
∈M2×2(R) : a = a, b = c, c = b, d = d

}
=

{[
a b
c d

]
∈M2×2(R) : b = c

}
=

{[
a b
b d

]
: a, b, d ∈ R

}
=

{
a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
: a, b, d ∈ R

}
so a basis for V1 is

B1 =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.
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Now consider V2:

V2 =

{[
a b
c d

]
∈M2×2(R) :

[
a b
c d

]
=

[
−a −c
−b −d

]}
=

{[
a b
c d

]
∈M2×2(R) : a = −a, b = −c, c = −b, d = −d

}
=

{[
a b
c d

]
∈M2×2(R) : a = d = 0, b = −c

}
=

{[
0 b
−b 0

]
: b ∈ R

}
=

{
b

[
0 1
−1 0

]
: b ∈ R

}
so a basis for V2 is

B2 =

{[
0 1
−1 0

]}
.

The set

B = B1 ∪B2 =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]}
is a spanning set for V1 + V2. To show that V1 + V2 is a direct sum we want to prove that B
is linearly independent. To do this, write each element of B as a vector in R4:

B = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1), (0, 1,−1, 0)}.

Create a matrix using the elements of B as rows and begin row reduction:
1 0 0 0
0 1 1 0
0 0 0 1
0 1 −1 0

 R2+R4→R2−−−−−−−→


1 0 0 0
0 2 0 0
0 0 0 1
0 1 −1 0


It should be obvious to you at this point that this reduces to the 4× 4 identity matrix (if it’s
not obvious, continue reducing). This means that B is linearly independent, so V1 + V2 is a
direct sum.

Since B is a basis for V1 ⊕ V2, we have dim(V1 ⊕ V2) = 4. Since V1 ⊕ V2 is a subspace of the
4-dimensional space R4 we must have that V1 ⊕ V2 = R4.

5. Let
V = {(x1, x2, x3, x4) ∈ R4 : x2 = x1 + x3, x3 = 2x1 − x2 + 5x4}.

Find a subspace W of R4 such that V ⊕W = R4.

Solution: First we want to find a basis for V . To do this notice that the conditions of V can
be rewritten as

x1 − x2 + x3 = 0

2x1 − x2 − x3 + 5x4 = 0.

Written as an augmented matrix, this is[
1 −1 1 0 0
2 −1 −1 5 0

]
.

It is important to note that the rows of this matrix are NOT elements of V .
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Now, perform row reduction:[
1 −1 1 0 0
2 −1 −1 5 0

]
R2−2R1→R2−−−−−−−−→

[
1 −1 1 0 0
0 1 −3 5 0

]
R1+R2→R1−−−−−−−→

[
1 0 −2 5 0
0 1 −3 5 0

]
.

This gives the equations

x1 = 2x3 − 5x4

x2 = 3x3 − 5x4,

so

V = {(x1, x2, x3, x4) ∈ R4 : x1 = 2x3 − 5x4, x2 = 3x3 − 5x4}
= {(2x3 − 5x4, 3x3 − 5x4, x3, x4) : x3, x4 ∈ R}
= {x3(2, 3, 1, 0) + x4(−5,−5, 0, 1) : x3, x4 ∈ R}.

A basis for V is
B = {(2, 3, 1, 0), (−5,−5, 0, 1)}.

Now form a matrix using the basis vectors as rows:[
2 3 1 0
−5 −5 0 1

]
.

By adding the rows (1, 0, 0, 0) and (0, 1, 0, 0) we can see that the resulting matrix
2 3 1 0
−5 −5 0 1
1 0 0 0
0 1 0 0


reduces to the identity matrix. Therefore the set

B = {(2, 3, 1, 0), (−5,−5, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0)}

is linearly independent. Let

W = span({(1, 0, 0, 0), (0, 1, 0, 0)})
= {(x1, x2, 0, 0) : x1, x2 ∈ R}.

Then dim(W ) = 2, and B is a basis for V +W . Since

dim(V ) + dim(W ) = 2 + 2 = 4 = dim(V +W )

this is a direct sum. Now, V ⊕W is a 4-dimensional subspace of the 4-dimensional space R4,
so we must have V ⊕W = R4.
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6. Let V be the vector space of all smooth functions from R to itself. Let F : V → V be a linear
map defined by F (u) = u′ − u. Let W be the vector space of all smooth functions satisfying
the differential equation u′′ + u′ + u = 0. Show that W is invariant under F .

Solution: Let w ∈W , so w satisfies

w′′ + w′ + w = 0.

Then z = F (w) = w′ − w. We want to show that z satisfies z′′ + z′ + z = 0:

z′′ + z′ + z = (w′ − w)′′ + (w′ − w)′ + (w′ − w)

= w′′′ − w′′ + w′′ − w′ + w′ − w
= (w′′′ + w′′ + w′)− (w′′ − w′ − w)

= (w′′ + w′ + w)′ − (w′′ − w′ − w)

= (0)′ + 0

= 0 + 0

= 0.

Therefore F (w) = z ∈W , so W is invariant under F .

7. Let V = M2×2(R). Let f : V → V be a linear map defined by f(A) = AT . Is f diagonalizable?
If it is, find a basis of V in which f is represented by a diagonal matrix.

Solution: Since f is a map from M2×2(R) to M2×2(R) we begin by finding a basis for
M2×2(R) and representing f as a 4× 4 matrix. Consider the basis B for M2×2(R) given by

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Applying f to the elements of B, we get

f

([
1 0
0 0

])
=

[
1 0
0 0

]
,

f

([
0 1
0 0

])
=

[
0 0
1 0

]
,

f

([
0 0
1 0

])
=

[
0 1
0 0

]
,

f

([
0 0
0 1

])
=

[
0 0
0 1

]
,

The matrix for f is then

A = [f ]B,B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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We now want to find the eigenvalues of this matrix. Calculate the characteristic polynomial:

det(A− λI) =

∣∣∣∣∣∣∣∣
1− λ 0 0 0

0 0− λ 1 0
0 1 0− λ 0
0 0 0 1− λ

∣∣∣∣∣∣∣∣
= (1− λ)

∣∣∣∣∣∣
−λ 1 0
1 −λ 0
0 0 1− λ

∣∣∣∣∣∣− 0 + 0− 0

= (1− λ)

(
(−λ)

∣∣∣∣−λ 0
0 1− λ

∣∣∣∣− (1)

∣∣∣∣1 0
0 1− λ

∣∣∣∣+ 0

)
= (1− λ) [(−λ)(−λ)(1− λ)− (1− λ)]

= (1− λ)(1− λ)(λ2 − 1)

= (−1)(λ− 1)(−1)(λ− 1)(λ− 1)(λ+ 1)

= (λ− 1)3(λ+ 1).

Setting (λ− 1)3(λ+ 1) we get the eigenvalues λ = 1 and λ = −1.

Now we want to find the eigenspaces for each eigenvalue. That is, we want to solve

(A− λI)v = 0

for v = (v1, v2, v3, v4) ∈ R4. First let λ = 1. The augmented form of (A− λI)v = 0 is
1− 1 0 0 0 0

0 0− 1 1 0 0
0 1 0− 1 0 0
0 0 0 1− 1 0

→


1 0 0 0 0
0 −1 1 0 0
0 1 −1 0 0
0 0 0 1 0

 row reduction−−−−−−−−→


0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
so v2 − v3 = 0 and hence v2 = v3. The eigenvectors v can be written as

v =


v1
v2
v2
v4

 = v1


1
0
0
0

+ v2


0
1
1
0

+ v3


0
0
0
1

 .
A basis for the eigenspace E1 is

B1 = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)}.

Now let λ = −1 and follow the same process:
1 + 1 0 0 0 0

0 0 + 1 1 0 0
0 1 0 + 1 0 0
0 0 0 1 + 1 0

→


2 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 2 0

 row reduction−−−−−−−−→


1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,
so v1 = v4 = 0 and v2 = −v3. The eigenvectors v can be written as

v =


0
v2
−v2

0

 = v2


0
1
−1
0

 .
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A basis for the eigenspace E−1 is

B−1 = {(0, 1,−1, 0)}.

Since
dim(E1) + dim(E−1) = 3 + 1 = 4 = dim(V ),

the linear map f is diagonalizable. Converting the elements of the set B1 ∪ B−1 back into
2× 2 form gives

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]}
.

Then B is a basis for V under which f is represented by the diagonal matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
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