Final Review
 Answer Key

1. Let $V=P_{2}(\mathbb{R})$ be the vector space of all polynnomials of degree ≤ 2 with real coefficients. Let

$$
\begin{aligned}
& V_{1}=\{f \in V: f(1)=0\}, \\
& V_{2}=\{f \in V: f(2)=0\} .
\end{aligned}
$$

Is $V_{1}+V_{2}$ a direct sum?
Solution: No. One way to prove that $V_{1}+V_{2}$ is not a direct sum of V_{1} and V_{2} is to show that

$$
V_{1} \cap V_{2} \neq\{0\} .
$$

That is, we can try to find a nonzero polynomial $f \in V_{1} \cap V_{2}$. Notice that we want $f(1)=0$ and $f(2)=0$, so $(x-1)$ and $(x-2)$ should be factors of $f(x)$. We can set

$$
f(x)=(x-1)(x-2)=x^{2}-3 x+2 .
$$

Then $f \neq 0$ (since, for example, $f(0)=2$), and $f \in V_{1} \cap V_{2}$. Therefore $V_{1} \cap V_{2} \neq\{0\}$, so the sum is not direct.
2. Let $V=P_{2}(\mathbb{R})$. Define $\phi(u)=|u(1)|+|u(2)|$ for any $u \in V$. Is ϕ a norm on V ?

Solution: No. To show ϕ is a norm, we need to show three properties:
(i) Positivity: $\phi(u) \geq 0$ for all $u \in V$ and if $\phi(u)=0$ then $u=0$.
(ii) Homogeneity: $\phi(\lambda u)=|\lambda| \phi(u)$ for all $u \in V$ and $\lambda \in F$.
(iii) Triangle inequality: $\phi(u+v) \leq \phi(u)+\phi(v)$ for all $u, v \in V$.

In this case, the only thing that is not satisfied is the statement that if $\phi(u)=0$ then $u=0$. To see this, let

$$
u=(x-1)(x-2)=x^{2}-3 x+2 \in V .
$$

Then

$$
\phi(u)=|u(1)|+|u(2)|=0+0=0,
$$

but $u \neq 0$.
3. Let $V=P_{2}(\mathbb{R})$. Define $\phi(u)=|u(1)|+|u(2)|+|u(3)|$ for any $u \in V$. Show that ϕ is a norm on V.

Solution: To show that ϕ is a norm on V, we need to prove each of the properties listed in the solution to problem 2 above.
(i) Positivity: Let $u \in V$. Then by the definition of absolute value, $|u(1)| \geq 0,|u(2)| \geq 0$, and $|u(3)|=0$, so

$$
\phi(u)=|u(1)|+|u(2)|+|u(3)| \geq 0+0=0 .
$$

Now suppose $\phi(u)=0$. Then we must have $u(1)=u(2)=u(3)=0$. The only way for this to be possible is if $u=0$ or if $(x-1),(x-2)$, and $(x-3)$ are all factors of u. In the second case, u must be a some multiple of

$$
(x-1)(x-2)(x-3)
$$

so u would be a polynomial of degree at least 3 . Since we assumed $u \in P_{2}(\mathbb{R})$, this is impossible, so we must have $u=0$.
(continued on next page)
(ii) Homogeneity: Let $\lambda \in F$ and $u \in V$. Then

$$
\begin{aligned}
\phi(\lambda u) & =|\lambda u(1)|+|\lambda u(2)|+|\lambda u(3)| \\
& =|\lambda||u(1)|+|\lambda||u(2)|+|\lambda||u(3)| \quad \text { by a property of absolute value } \\
& =|\lambda|(|u(1)|+|u(2)|+|u(3)|) \\
& =|\lambda| \phi(u),
\end{aligned}
$$

so homogeneity is satisfied.
(iii) Triangle inequality: Let $u, v \in V$. Then $|u(x)+u(y)| \leq|u(x)|+|u(y)|$ since absolute value satisfies the triangle inequality. Them

$$
\begin{aligned}
\phi(u+v) & =|u(1)+v(1)|+|u(2)+v(2)|+|u(3)+v(3)| \\
& \leq|u(1)|+|v(1)|+|u(2)|+|v(2)|+|u(3)|+|v(3)| \\
& =(|u(1)|+|u(2)|+|u(3)|)+(|v(1)|+|v(2)|+|v(3)|) \\
& =\phi(u)+\phi(v),
\end{aligned}
$$

so ϕ satisfies the triangle inequality.
4. Put

$$
\begin{aligned}
& V_{1}=\left\{A \in M_{2 \times 2}(\mathbb{R}): A=A^{T}\right\}, \\
& V_{2}=\left\{A \in M_{2 \times 2}(\mathbb{R}): A=-A^{T}\right\}
\end{aligned}
$$

Show that $V_{1} \oplus V_{2}=M_{2 \times 2}(\mathbb{R})$.
Solution: Recall the definition of the transpose of a matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] .
$$

Now we need to find bases for these two subspaces. First consider V_{1} :

$$
\begin{aligned}
V_{1} & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): a=a, b=c, c=b, d=d\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): b=c\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]: a, b, d \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: a, b, d \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for V_{1} is

$$
B_{1}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
$$

Now consider V_{2} :

$$
\begin{aligned}
V_{2} & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
-a & -c \\
-b & -d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): a=-a, b=-c, c=-b, d=-d\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2 \times 2}(\mathbb{R}): a=d=0, b=-c\right\} \\
& =\left\{\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]: b \in \mathbb{R}\right\} \\
& =\left\{b\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]: b \in \mathbb{R}\right\}
\end{aligned}
$$

so a basis for V_{2} is

$$
B_{2}=\left\{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

The set

$$
B=B_{1} \cup B_{2}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

is a spanning set for $V_{1}+V_{2}$. To show that $V_{1}+V_{2}$ is a direct sum we want to prove that B is linearly independent. To do this, write each element of B as a vector in \mathbb{R}^{4} :

$$
B=\{(1,0,0,0),(0,1,1,0),(0,0,0,1),(0,1,-1,0)\} .
$$

Create a matrix using the elements of B as rows and begin row reduction:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{4} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

It should be obvious to you at this point that this reduces to the 4×4 identity matrix (if it's not obvious, continue reducing). This means that B is linearly independent, so $V_{1}+V_{2}$ is a direct sum.
Since B is a basis for $V_{1} \oplus V_{2}$, we have $\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=4$. Since $V_{1} \oplus V_{2}$ is a subspace of the 4 -dimensional space \mathbb{R}^{4} we must have that $V_{1} \oplus V_{2}=\mathbb{R}^{4}$.
5. Let

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{2}=x_{1}+x_{3}, x_{3}=2 x_{1}-x_{2}+5 x_{4}\right\} .
$$

Find a subspace W of \mathbb{R}^{4} such that $V \oplus W=\mathbb{R}^{4}$.
Solution: First we want to find a basis for V. To do this notice that the conditions of V can be rewritten as

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =0 \\
2 x_{1}-x_{2}-x_{3}+5 x_{4} & =0 .
\end{aligned}
$$

Written as an augmented matrix, this is

$$
\left[\begin{array}{cccc|c}
1 & -1 & 1 & 0 & 0 \\
2 & -1 & -1 & 5 & 0
\end{array}\right]
$$

It is important to note that the rows of this matrix are NOT elements of V. (continued on next page)

Now, perform row reduction:

$$
\begin{aligned}
{\left[\begin{array}{cccc|c}
1 & -1 & 1 & 0 & 0 \\
2 & -1 & -1 & 5 & 0
\end{array}\right] } & \xrightarrow{R_{2}-2 R_{1} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -3 & 5 & 0
\end{array}\right] \\
& \xrightarrow{R_{1}+R_{2} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
1 & 0 & -2 & 5 & 0 \\
0 & 1 & -3 & 5 & 0
\end{array}\right]
\end{aligned}
$$

This gives the equations

$$
\begin{aligned}
& x_{1}=2 x_{3}-5 x_{4} \\
& x_{2}=3 x_{3}-5 x_{4},
\end{aligned}
$$

so

$$
\begin{aligned}
V & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=2 x_{3}-5 x_{4}, x_{2}=3 x_{3}-5 x_{4}\right\} \\
& =\left\{\left(2 x_{3}-5 x_{4}, 3 x_{3}-5 x_{4}, x_{3}, x_{4}\right): x_{3}, x_{4} \in \mathbb{R}\right\} \\
& =\left\{x_{3}(2,3,1,0)+x_{4}(-5,-5,0,1): x_{3}, x_{4} \in \mathbb{R}\right\} .
\end{aligned}
$$

A basis for V is

$$
B=\{(2,3,1,0),(-5,-5,0,1)\} .
$$

Now form a matrix using the basis vectors as rows:

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 0 \\
-5 & -5 & 0 & 1
\end{array}\right] .
$$

By adding the rows $(1,0,0,0)$ and $(0,1,0,0)$ we can see that the resulting matrix

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 0 \\
-5 & -5 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

reduces to the identity matrix. Therefore the set

$$
B=\{(2,3,1,0),(-5,-5,0,1),(1,0,0,0),(0,1,0,0)\}
$$

is linearly independent. Let

$$
\begin{aligned}
W & =\operatorname{span}(\{(1,0,0,0),(0,1,0,0)\}) \\
& =\left\{\left(x_{1}, x_{2}, 0,0\right): x_{1}, x_{2} \in \mathbb{R}\right\} .
\end{aligned}
$$

Then $\operatorname{dim}(W)=2$, and B is a basis for $V+W$. Since

$$
\operatorname{dim}(V)+\operatorname{dim}(W)=2+2=4=\operatorname{dim}(V+W)
$$

this is a direct sum. Now, $V \oplus W$ is a 4-dimensional subspace of the 4 -dimensional space \mathbb{R}^{4}, so we must have $V \oplus W=\mathbb{R}^{4}$.
6. Let V be the vector space of all smooth functions from \mathbb{R} to itself. Let $F: V \rightarrow V$ be a linear map defined by $F(u)=u^{\prime}-u$. Let W be the vector space of all smooth functions satisfying the differential equation $u^{\prime \prime}+u^{\prime}+u=0$. Show that W is invariant under F.
Solution: Let $w \in W$, so w satisfies

$$
w^{\prime \prime}+w^{\prime}+w=0 .
$$

Then $z=F(w)=w^{\prime}-w$. We want to show that z satisfies $z^{\prime \prime}+z^{\prime}+z=0$:

$$
\begin{aligned}
z^{\prime \prime}+z^{\prime}+z & =\left(w^{\prime}-w\right)^{\prime \prime}+\left(w^{\prime}-w\right)^{\prime}+\left(w^{\prime}-w\right) \\
& =w^{\prime \prime \prime}-w^{\prime \prime}+w^{\prime \prime}-w^{\prime}+w^{\prime}-w \\
& =\left(w^{\prime \prime \prime}+w^{\prime \prime}+w^{\prime}\right)-\left(w^{\prime \prime}-w^{\prime}-w\right) \\
& =\left(w^{\prime \prime}+w^{\prime}+w\right)^{\prime}-\left(w^{\prime \prime}-w^{\prime}-w\right) \\
& =(0)^{\prime}+0 \\
& =0+0 \\
& =0 .
\end{aligned}
$$

Therefore $F(w)=z \in W$, so W is invariant under F.
7. Let $V=M_{2 \times 2}(\mathbb{R})$. Let $f: V \rightarrow V$ be a linear map defined by $f(A)=A^{T}$. Is f diagonalizable? If it is, find a basis of V in which f is represented by a diagonal matrix.
Solution: Since f is a map from $M_{2 \times 2}(\mathbb{R})$ to $M_{2 \times 2}(\mathbb{R})$ we begin by finding a basis for $M_{2 \times 2}(\mathbb{R})$ and representing f as a 4×4 matrix. Consider the basis B for $M_{2 \times 2}(\mathbb{R})$ given by

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Applying f to the elements of B, we get

$$
\begin{aligned}
& f\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \\
& f\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \\
& f\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \\
& f\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],
\end{aligned}
$$

The matrix for f is then

$$
A=[f]_{B, B}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We now want to find the eigenvalues of this matrix. Calculate the characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cccc}
1-\lambda & 0 & 0 & 0 \\
0 & 0-\lambda & 1 & 0 \\
0 & 1 & 0-\lambda & 0 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
1 & -\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|-0+0-0 \\
& =(1-\lambda)\left((-\lambda)\left|\begin{array}{cc}
-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right|-(1)\left|\begin{array}{cc}
1 & 0 \\
0 & 1-\lambda
\end{array}\right|+0\right) \\
& =(1-\lambda)[(-\lambda)(-\lambda)(1-\lambda)-(1-\lambda)] \\
& =(1-\lambda)(1-\lambda)\left(\lambda^{2}-1\right) \\
& =(-1)(\lambda-1)(-1)(\lambda-1)(\lambda-1)(\lambda+1) \\
& =(\lambda-1)^{3}(\lambda+1) .
\end{aligned}
$$

Setting $(\lambda-1)^{3}(\lambda+1)$ we get the eigenvalues $\lambda=1$ and $\lambda=-1$.
Now we want to find the eigenspaces for each eigenvalue. That is, we want to solve

$$
(A-\lambda I) v=0
$$

for $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \mathbb{R}^{4}$. First let $\lambda=1$. The augmented form of $(A-\lambda I) v=0$ is

$$
\left[\begin{array}{cccc|c}
1-1 & 0 & 0 & 0 & 0 \\
0 & 0-1 & 1 & 0 & 0 \\
0 & 1 & 0-1 & 0 & 0 \\
0 & 0 & 0 & 1-1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{\text { row reduction }}\left[\begin{array}{cccc|c}
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

so $v_{2}-v_{3}=0$ and hence $v_{2}=v_{3}$. The eigenvectors v can be written as

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{2} \\
v_{4}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]+v_{3}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

A basis for the eigenspace E_{1} is

$$
B_{1}=\{(1,0,0,0),(0,1,1,0),(0,0,0,1)\} .
$$

Now let $\lambda=-1$ and follow the same process:

$$
\left[\begin{array}{cccc|c}
1+1 & 0 & 0 & 0 & 0 \\
0 & 0+1 & 1 & 0 & 0 \\
0 & 1 & 0+1 & 0 & 0 \\
0 & 0 & 0 & 1+1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right] \xrightarrow{\text { row reduction }}\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

so $v_{1}=v_{4}=0$ and $v_{2}=-v_{3}$. The eigenvectors v can be written as

$$
v=\left[\begin{array}{c}
0 \\
v_{2} \\
-v_{2} \\
0
\end{array}\right]=v_{2}\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] .
$$

(continued on next page)

A basis for the eigenspace E_{-1} is

$$
B_{-1}=\{(0,1,-1,0)\}
$$

Since

$$
\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{-1}\right)=3+1=4=\operatorname{dim}(V),
$$

the linear map f is diagonalizable. Converting the elements of the set $B_{1} \cup B_{-1}$ back into 2×2 form gives

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

Then \mathcal{B} is a basis for V under which f is represented by the diagonal matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

