Some review problems for Final

In the following problems, verify your answer with valid arguments. Make sure to write in full sentences.

1. Let $V = P_2(\mathbb{R})$ be the vector space of all polynomials of degree ≤ 2 with real coefficients. Let

$$V_1 = \{ f \in V : f(1) = 0 \}, V_2 = \{ f \in V : f(2) = 0 \}.$$

Is $V_1 + V_2$ a direct sum ?

- 2. Let $V = P_2(\mathbb{R})$. Define $\phi(u) = |u(1)| + |u(2)|$ for any $u \in V$. Is ϕ a norm on V?
- 3. Let $V = P_2(\mathbb{R})$. Define $\phi(u) = |u(1)| + |u(2)| + |u(3)|$ for any $u \in V$. Show that ϕ is a norm on V.
- 4. Put

$$V_1 = \{ A \in M_{2 \times 2}(\mathbb{R}) : A = A^T \}$$

$$V_2 = \{ A \in M_{2 \times 2}(\mathbb{R}) : A = -A^T \}$$

Show that $V_1 \oplus V_2 = M_{2 \times 2}$.

- 5. Let $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_2 = x_1 + x_3, x_3 = 2x_1 x_2 + 5x_4\}$. Find a subspace W of \mathbb{R}^4 such that $V \oplus W = \mathbb{R}^4$.
- 6. Let V be the vector space of all smooth functions from \mathbb{R} to itself. Let $F: V \to V$ be a linear map defined by F(u) = u' u. Let W be the vector space of all smooth functions satisfying the differential equation u'' + u' + u = 0. Show that W is invariant under F.
- 7. Let $V = M_{2 \times 2}(\mathbb{R})$. Let $f: V \to V$ be a linear map defined by $f(A) = A^T$. Is f diagonalizable? If it is, find a basis of V in which f is represented by a diagonal matrix.